
AD-AI8 973 C3 EVAL MODEL DEVELOPMENT AND TEST VOLUME 2 PROGRAMMERS 1/3
MRNUAL..(U) INSTITUTE FOR DEFENSE ANALYSES ALEXANDRIA
VA R F ROBINSON ET AL. OCT 85 IDA-P-1882-VOL-2

UNCLASSIFIED IDA/HG-S5-39596 MDAg93-84-C-S031 F/0 9/2

lElllEllllliIIllllllllllhl
Slflflllflflflflfllll

mhllllllllllll
Slfllfllfllfllfllfllfl

lllllllllllhl
llllllllllllll!

M32 .2

I".6

1.0.8

1111.21
- 111IIIIIIg h

-. I II1IIIll *

MICROCOPY RESOLUTION TEST CHART

NATONAL BUREAU OF STANOAROS- 1963- A

%,.'.
.'.".

J Co.

V".< ...,+,

..... ... l i a l- F l

Copy 70 of 75 copies

AD-A168 973 1
W1

IDA PAPER P-1882

4".

C3 EVAL MODEL DEVELOPMENT AND TEST
Volume II: Programmers Manual

Robert F. Robinson
Joseph W. Stahl
M. L. Roberson

Applications Research Corporation

D. W. Roberson
Applications Research Corporation

October 1985 r.

Prepared for
- Joint Chiefs of Staff

31 INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311

IDA Log No. H 85-30596

2.

UNCLASSIFIED
SECURITY CLASSIFICATION OrF ISPAE - ;

REPORT DOCUMENTATION PAGE
I&. REPORT SECURITY CLASSIFICATION 11b. RESTRICTIVE MARKINGS

UNCLASSIFIED

S 2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRISUTIONIAVAILABILITY OF REPORT

2b. DECLASSIFICA I NIDOWN RDING SHEDULE Aproe for Public .1g;distrbuton uimimted

NIA

, 4. PERFORMING ORGANIZATION REPORT NUMBER (5) S, MONITORING ORGANIZATION REPORT NUMBER (5)

IDA Paper P.18=2

Ba. NAME OF PERFORMING ORGANIZATION 7 b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Inat~~tuf1 appleigc.abley). OUSORE (DoD-IDA Management Oflie*)

6c. ADDRESS (City, Stat., and Zip Code) 7b. ADDRESS (CITY, STATE, ANMD ZIP CODE)
1801 N. Beauregord Street 1801 North Seauregard Street
Alexandria. VA 22311 Alexandrla, VA 22311

8o. NAME OF FUNOINGJSPONSORING Ob. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Join Chifs o Staf (J5)UMA M0084 C 8031

Bc. ADDRESS (City, State, and Zip Code to. SOURCE OF FUNDING NUMBERS
The Pentagon PROGRAM IPROJECT ITASK NO. ACCESSION NO.
Washington. D.C. 2030145000 ELEMENT INO. WORK UNIT

b 11. TITLE (iclude Security Classifcation)

C* EVAL MODEL DEVELOPMENT AND TEST - Voum N. -Pogramomranuel

12. PERSONAL AUTHOR (5).
Robert F. Robieson, Josephm W. Stahl, ML- Roberson (ARC), D.W. Robereon (ARC)

13. TYEO EOT 3.TM COVERED 14. DATE OF REPORT (Yew, Month. Day) 1lk PAGE COUNT
FINAL I OiS o~W22

16. SUPPLEMENTARY NOTATION

17. COSATI CODES ^'.SUBJECT TERMS (Continu, en rever*@ N necessary and Identify by block number)
-' ,C.> Comwmand, Control, communicallenp comb. soeame, methodology. abnulstlon' games,

* .. FIELD GROUP SUB-GROUP t.lyl effectivee. measures

C19. ABSTRACT (Continue on reverse If necesary and Identify by block number)

This Is en interhil report on the extension end development of the C 3EVAL modeli. The #model is to permit assesment of the effects en combat
of change. In command and control processees end communication. network etructure and capacity. The model ha had a partial pre-proceagor

4 ~~. added to asit possible anslyetllnodgl users to Input data and a post-proceeor to provide graphic display of some output. The command
str~ur Includes the Central Euoencmadnodes from division to SHAPE for U.S. force.. The node. have had Input end output lits

addd t prmi rpreenallon f egrde opraionsmunder attack orwhen the unkIt moving. Tecorps level force allocation procedure
hag been Improved. Some processe" have been randomized. The corps opera%*. on Information different from that available at the division or
combat unit due to tkne delays, rendonbess, and sceario Inputs. The Impact of changes In the C3 eyetem can be aeon In change. In weapon
losses, non-arrIval of clame air support, and measges delayelloat as well as other apeetlena related elemnent.

4

* 20. DISTRISUTIONJAVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

03 UNCLASSIFIED/UNLIMITED ElSAME AS RPT. 03 OTIC USERS

22s. NAME OF RESPONSIBLE INDIVIDUAL b.TLPOE(nldAr.Ce) rcOFIESM L

DD FORM 1473. 64 MAR 83 APR edition may be used until exhausted.
% ~~All other edition* are oslt

% SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Wm

I IDA PAPER P-1882

C3 EVAL MODEL DEVELOPMENT AND TEST
Volume II: Programmers Manual

Robert F. Robinson
Joseph W. Stahl

-~ M. L. Roberson
* Applications Research Corporation

* D. W. Roberson
Applications Research Corporation

October 1985

I DA

* ~INSTITUTE FOR DEFENSE ANALYSES :'a

NY Contract MDA 903 84 C 0031
Task T-5-309

&ia

PREFACE

C, This effort was undertaken in March 1985 as a part of a continuing program to
develop the C3EVAL model as an analytic tool for use by the Office of the Joint Chiefs of
Staff/Command Control and Communications Systems (OJCS/C3S) under Contract No.
MDA 903-84C-0031, Task Order No. T-5 -309. The basic model has been developed by
IDA with programming support from Applications Research Corporation (ARC). This

* work is reported in IDA Paper P- 1756, "Development of C3 Assessment Methodology:
The C3EVAL Model," dtd February 1984. This is a report on work in progress and
provides a description of the work done in FYI 985, an update of the users' manual, and a
briefing on the model and its current capabilities.

.

Hi

tS

Uf

"a
"a

* '%* _

~L

.1
RFC

* ii[

CONTENTS

A. INTRODUCTION

B. PROGRAM STRUCTURES

1. Program Preproc

• a. Exit

b. Subroutine Instruc

c. Subroutine Pream

d. Subroutine SimCtrl

e. Subroutine NodeDic

(1) Subroutine Brouse

(2) Subroutine DelDic

(3) Subroutine FindDic

(4) Subroutine GetNew

f. Subroutine Node

(1) Subroutine DelNode

* (2) Subroutine FindNode

(3) Subroutine GetName

(4) Subroutine GetNew

(5) Subroutine ScrBk

(6) Subroutine ScrFwd

g. Subroutine Limits
h. Subroutine CommNet

i4 Subroutine ExtMsg

j. Subroutine CbData

k. Subroutine AoData

1. Subroutine HcData

* m. Subroutine Rules

* n. Utilities

(1) Subroutine DMinit

LV

* ' .* . -

(2) Subroutine Find

(3) Subroutine GetTyp

. (4) Subroutine GetWrd
(5) Subroutine Gimme

(6) Subroutine POut

(7) Subroutine Releas

(8) Subroutine Restore

(9) Subroutine Save

(10) Subroutine ScrLine

(11) Subroutine SetFlag

(12) Subroutine SnapQ

(13) Subroutine UnSnap

(14) Subroutine Validi

o. Data Structures
p. Program Notes

q. Internal Code Documentation

2. Program C3EVAL

a. Control Module

(1) Subroutine Contrl
(2) Subroutine DMinit

b. Input Module

(1) Subroutine Input

, (2) Subroutine Inputa

(3) Subroutine Inputc

(4) Subroutine RdRule

(5) Subroutine RuleIn

(6) Subroutine StatIn
(7) Time T Input Sub-module

(a) Subroutine ExtMsg
(b) Subroutine ExtSpt

(c) Subroutine TInPut

(d) Subroutine ChForc

(e) Subroutine ChLim

Vi

1.[I W I

(f) Subroutine ChLink

(g) Subroutine ChNode

(8) Block Data FRatio

c. Events Module

(1) Subroutine Events

(2) C3 Sub-module

(a) Subroutine Node

(b) Subroutine AloCAS
(c) Subroutine AloCat

(d) Subroutine AltOut

(e) Subroutine AtoAlo

(f) Subroutine AtoDel

(g) Subroutine AtoOut

(h) Subroutine AtoRtn

(i) Subroutine FQueue
(j) Subroutine Holdl
(k) Subroutine HoldQ2

(1) Subroutine IntlUp.

(m) Subroutine Limit

(n) Subroutine MakMsg

(o) Subroutine MDelay

(p) Subroutine MinLim

(q) Subroutine MouLim

(r) Subroutine MovMsg

(s) Subroutine Msgn

(t) Subroutine MsgOut

(u) Subroutine PRatio

(v) Subroutine Proces

*.. (w) Subroutine RanMsg

(x) Subroutine Send

(y) Subroutine StatUp

' (3) Air Operations Sub-module

(a) Subroutine AirOps

(b) Subroutine MakMsg

v

(c) Subroutine Status

(4) Combat Sub-module

(a) Subroutine CASLos
(b) Subroutine Combat

(c) Subroutine MakMsg

(d) Subroutine Map

(e) Subroutine RptLos

d. Output Module

(1) Subroutine OutPut

o (2) Subroutine PMsgl

(3) Subroutine PMsg2

(4) Subroutine RulOut

(5) Subroutine RulPrt

(6) Subroutine Statou

(7) Graphics Data

V (8) Subroutine VMData

e. Utilities

(1) Subroutine Find

(2) Subroutine Gimme

(3) Subroutine POut

(4) Subroutine Releas

(5) Subroutine Restor
(6) Subroutine Save

(7) Subroutine Snap
f. Data Structures

(1) Common Data Structures

(2) Dynamic Data Structures

g. Program Notes

h. Internal Code Documentation

3. Post Processor

(a) Program GraphSum

(1) Subroutine GetSys

(2) Subroutine GetVector

viii

14

.J(3) Subroutine Graphl

(4) Subroutine Graph2

(5) Subroutine Graph3

(6) Subroutine Graph4

(7) Subroutine Graph5

(8) Subroutine Options

(9) Data Structures

(10) Program Notes

(11) Internal Code Documentation

(b) Program GraphT

(1) Subroutine GetSys

(2) Subroutine GetUnit

(3) Subroutine Graph-

* (4) Subroutine Graph2

(5) Subroutine Graph3

(6) Subroutine Graph4

(7) Subroutine Graph5

(8) Subroutine Options

(9) Data Structures

(10) Program Notes

(11) Internal Code Documentation

*. Attachment 1: PreProc Code Listing

Attachment 2: C3EVAL Code Listing

Attachment 3: PostProc Code Listing

ix

FIGUJRES5

-. 1. C3EVAL Program Functions

2. Main Menu

3. Instruction Screen

- 4. Data Dictionary Screen

5. C3Network

6. C3EVAL Modules

7. C3EVAL Subroutine Hierarchy

8. Print and Debug Parameters

9. Scenario Input Subroutines

10. Time T Input Subroutines

11. Structure of Event Processes

12. Message Allocation Sequence

4. 13. Parameters in Communications Allocation

14. Aircraft Availability Structure

15. Print Out by Routine Output

16. Node Dynamic Linking

17. CRC Dynamic Linking

18. Generic Red Unit Tables of Equipment Dynamic
Linking

i.4.

J.. 4.

" .. " x. , " . . ' ' ' . .-.- % " -. " . o - . " r.

C 3EVAL PROGRAMMERS' MANUAL

A. INTRODUCTION

'This manual is to be used in conjuction with an Analysts' ,'-

Manual for the C3EVAL model. This manual describes the C3EVAL

command, control and communications model and its preprocessor

and post processor The preprocessor consists of 37 subroutines

of approximately 2,378 lines of code. The post processor con-

*[sists of 18 subroutines of approximately 936 lines of code. The
C3EVAL (85) model has 70 subroutines and approximately 6,314

0 lines of code. The source code for the model is written in

FORTRAN for a VAX 11/785. Each of the program structures

(preproc, C3EVAL, postproc) are presented in separate sections.

Theze is some duplication of subroutine names in preproc and

CVEVAL. In those cases where the subroutine code is actually

used by both programs, it is noted in the preproc description.

In each section the data structures, notes on the program and

extracts of the comments that are in the code as internal

documentation. Computer listings of the codes are in the

* attachments.

The preprocessor utilizes the DEC Forms Management System

(FMS) to communicate with the users. The post processor is based

on DECGRAPH for continuous and bar graph output. The C3EVAL

requires the normal FORTRAN library routines including user

options to use the random number generator.,/(L

Ow B. Program Structure

%The source code and development data files are contained in

the DRA: [C3EVAL.UNCLAS] directory on the IDA VAX 11/785

computer under user identification code CAG - 060107. Some model

"1

facilities are under continuing development. Those functions

that are in this status (i.e., preproc Limits, CommNet,..and

.* helicopter allocation in C3EVAL) are identified in the applicable

sections. Figure 1 shows the functional and file relationships

*" between programs. The C3EVAL input files can be modified by use

of a general purpose editor and contain data preambles and

P comment areas to assist a user in this mode. The preproc work

file is binary and is not useful to a general purpose editor.

All files shown may be saved for future reference and comparison

of results.

B.I. Program Preproc

The preprocessor was written in order to facilitate the

creation and modification of the data base required to run

C3EVAL. The program is a mixture of FORTRAN subroutines and FMS

commands for communication with the user. The data base for

C3EVAL is 9 data sets contained in 4 input files. The elements

of data set are inter-referencing during validation. The

preprocessor also allows the user to use names to identify data

base. The preprocessor is menu driven with scrolling in fields

where it is required. This simplifies what the user needs to

* know in order to create the data base because the user does not

need to know all the in's and out's of an editor. Whenever an

invalid input is received an error message is flashed at the

bottom of the screen. Figure 2 presents the main menu for the

preprocessor as shown on the terminal. When the user indicates

" the EXIT function output file dispositions are queried by the

prepro-cessor.

B.la. Exit

This option allows the user to leave the main menu and

return to the main program. The main program can then save the

2

,"I

CL-J

LL, cc_j.-0

LU X

LUU

CO)u

0 cc
QU

IL6

6 c:

1. EXIT 1. CREATE
2. INSTRUCTIONS 2. EDIT
3. PREAMBLE DOCUMENTATION
4. SIMULATION CONTROL SELECT MODE (1-2): 1
5. NODE DICTIONARY
6. NODE
7. LIMITS
8. COMMUNICATIONS NETWORKS
9. EXTERNAL MESSAGES

10. COMBAT DATA
11. AIRCRAFT DATA
12. HELICOPTER DATA
13. RULES

SELECT OPTION NUMBER (1-12): 6

Figure 2.

contents of virtual memory or create the data file if the user

indicates that he wants either file.

B.lb. Subroutine Instruc

Subroutine Instruc puts the instruction form on the screen

and waits for the user to hit the < RETURN > key. The instruc-

tion form contains information on how to move the cursor around

the screen and other special function eys. The special functions

include: browsing up or down a queue, searching for an entry in

a queue and deleting entries from a queue. Figure 3 shows the

instruction screen.

B.ic. Subroutine Pream
This subroutine allows the user to make preamble documenta-

tion for the beginning of the data file. Each line of documenta-
tion is 60 characters long. Lines can be changed or added to the

bottom but not deleted or inserted.

4

m ."77

INSTRUCTION SCREEN

MOVING FROM ONE FIELD TO ANOTHER:
NEXT FIELD = < TAB >
PREVIOUS FIELD = < BACKSPACE >

SCROLLING IN A SCROLLED AREA:
SCROLL NEXT = DOWN ARROW
SCROLL PREVIOUS = UPAIROW

I EXIT SCROLLED AREA NEXT = < PF1 >
EXIT SCROLLED AREA PREVIOUS = < PFI >

SEARCHING FOR ENTRY = KEYPAD 4
NOTE: WHEN RESPONDING TO PROMPT HIT < ENTER > NOT < RETURN >

DELETING ENTRY = KEYPAD 4
NOTE: WHEN RESPONDING TO PROMPT HIT < ENTER > NOT < RETURN >

LOOKING AT ENTRIES:
NEXT SCREEN = KEYPAD 2
PREVIOUS SCREEN = KEYPAD 8

HIT < RETURN > TO MAIN MENU

Figure 3.

*B.ld. Subroutine SimCtrl

Subroutine SimCtrl allows the user to set the values of

C3EVAL print control flags, optional output modifier times, debug

output flag and debug output start and stop times. For all flags

a value of zero represents OFF and a value of 1 represents ON.

No other values are accepted as input for flags. All output

times must be between 0 and 9999.

B.le. Subroutine NodeDic

Subroutine NodeDic allows the user to create and edit

entries within the node dictionary. Create mode allows the user

to create new types and names to correspond to them. Edit mode

allows the user to change types, i.e., change all entries of type

'100' to type '200'. The user can also change or add names.

Both modes allow the user to delete all entries of the current

5

!~~~~~~~~'~~~'NKW MY7~ '-TV. IPW WU'' RWVN WV WWW WXTWV JUVP V VJJWKF TW N' 2 .' -R7 IU-

type. Only edit mode allows the user to search for a particular

type. Figure 4 is an example showing that-type '300' is a

division and it has acceptable abbreviations of 'div' or 'DIV'.

TYPE NAME
300 div

DIVISION
DIV

MODE: EDIT

HIT < RETURN > TO RETURN TO MAIN MENU

Figure 4: DATA DICTIONARY SCREEN

B.l.e(l) Subroutine Browse

Used for sequentially searching through the node dictionary

while in edit mode. The current contents of the screen is all

dictionary entries corresponding to the current type number. If

p the user hits the browse up key then the subroutine gets the

locations of all entries corresponding to the previous type. If

no previous type exists then sends 'Top of Queue' message to user

and keeps the pointers to the current dictionary entries. If the
user hits the browse down key then the subroutine gets the loca-

*. tions of all entries corresponding to the next type. If no next
*type exists then sends 'Bottom of Queue' message to user and

keeps the pointers to the current dictionary entries.

B.l.e(2) Subroutine DelDic
:.5-

Used for deleting all entries in the node dictionary cor-
responding to the current type, i.e., all entries that are on

6-

the screen when the user hits the appropriate key. There are two

NO pointers, TOP and BOTTOM, which point to the first and last

entries of the current type. Starts at location TOP and walks

through the queue using the pointers which are sorted by type.

Each entry encountered is removed from both dictionary queues and

its virtual memory space is released for future use. Stops when

it encounters location BOTTOM.

B.1.e(3). Subroutine FindDic

This subroutine is called when the user hits the find key

while editing the node dictionary. The type to search for is

input by the user. Then subroutine Find is called to get the

pointer to the first occurrence of the input type within the node

dictionary. The pointer returned by Find is stored in TOP.

. Since all entries of the same type are grouped together the

dictionary is walked through starting at location TOP until the

. last entry of the input type is found. The pointer to the last

entry is stored in BOTTOM. If the type to search for is not

found in the node dictionary (find returns a zero) then get first

type that is in node dictionary (set TOP to zero).

P. B.1.e(4). Subroutine GetNew

Subroutine GetNew gets from the user an entry that is not an

already existing entry. The field to input from and the queue to

search are both parameters. The offset from the beginning of a

7' queue element to compare on is also a parameter. If the user

input entry is found in the specified queue then an error message

is sent and the user must input again. If the user input entry

is not found in the specified queue then the input is passed back

to the calling routine.

ooP

7

AU I
* * ~ . .o

B.1.f. Subroutine Node

Subroutine Node allows the user to create and edit the node

data set. In create mode the user creates new nodes and gives

information about the node. This information includes the main

node's commander, the main node's subordinates and any other

nodes that the main node can communicate with. There can also be

two alternate communication nodes for each node that the main

node can communicate with. In edit mode the user is allowed to

change information about existing nodes. Both modes allow the

user to delete the current node from the node queue. Only edit

mode allows the user to search for a specific node or to browse

"- up or down the node queue.

B.1.f(l). Subroutine DelNode

Subroutine DelNode deletes a node from the node queue. When

a node is deleted its name is set to "DELETED" and it is resorted

into the node queue. The node is not removed entirely from the

node queue because all other nodes that have the deleted node

listed as a commander, subordinate, etc. would either find the

* wrong node or garbage when it accessed the pointer to the deleted

node. When the node is deleted the pointers to the commander and

its alternates are set to zero. All entries in the subordinate

and other network node queues are removed from the queues and

.* their virtual memory space returned for future use.

B.1.f(2). Subroutine FindNode

This subroutine is called when the user hits the find key

while editing a node. Tt.e user inputs the name of the node to

search for. Then subroutine Find is used to get the pointer to

the entry in the node queue that has the input name. If the node

name is found in the node queue then the current position is set

to the pointer to the entry. If the node name is not found (find

8
N,

* . ,.. % - * . - ~°

returns a zero) then the current position is set to zero and a

message is sent to the user.

V B.1.f(3). Subroutine GetName

Subroutine GetName is used to get a valid node name from the

user. If the input name is an already existing node then the

•- pointer to that node is returned. Otherwise, if the name con-

tains an entry in the node dictionary then a new node is created

with its name being the input name. This new node is sorted into

the node queue and the pointer to its location is the value re-

turned by GetName. If the input name is neither an already

existing node nor a node name that contains an entry in the node

dictionary then the input name is illegal. The subroutine sends

an error message to the user and gets another node name from the

- user.

* B.1.f(4). Subroutine GetNew

(See B.l.e. (4))

B..f(5). Subroutine GetScr

* . Subroutine GetScr gets from the user a sequence of valid

" node names from a scrolled area. A valid node name is either a

node that is already in the queue or a node name that contains a

S. word that is in the node dictionary. For each node name in the

sequence, if the node name already exists then save the pointer

to its location in virtual memory. Otherwise, if the node con-

tains a word that is in the dictionary then create a new entry

for the queue and save its pointer. Otherwise, the node name is

illegal and the user must input another node name. The values

returned are the 3 pointers to the nodes input by the user.

"* 9

. -. . -.

B.1.f(6). Subroutine ScrBk

Subroutine ScrBk is called whenever the user hits the

up-arrow key while in a scrolled area. If the current line of

the scrolled area is not the top line then the new current line

becomes the line above the current line. If the current line of

the scrolled area is the top line and there are undisplayed lines

above the current line then each line of the scrolled area is

moved down and the new line is displayed at the top of the

scrolled area.

* B.l.f(7). Subroutine ScrFwd

Subroutine ScrFwd is called whenever the user hits the

down arrow key while in a scrolled area. If the current line of

-the scrolled area is not the bottom line then the new current

line becomes the line below the current line. If the current

line of the scrolled area is the bottom line and there are

undisplayed lines below the current line then each line of the

W scrolled area is moved up and the new line is displayed at the

bottom of the scrolled area.

- B.l.g. Subroutine Limits

* Subroutine Limits is not implemented yet.

B.l.h. Subroutine CommNet

Subroutine CommNet is not implemented yet.

B.l.i. Subroutine Extsg

-. Subroutine ExtMsg is not implemented yet.

B.L.j. Subroutine CbData

Subroutine CbData is not implemented yet.

10

' ' , '. , - .,_.,' - ,, -,' -,... , ',S. ., ,.,. -.."--.-.-. ...' .

B.l.k. Subroutine AcData

Subroutine AcData is not implemented yet.

B.1.1. Subroutine HcData

Subroutine hcData is not implemented yet.

B.l.m. Subroutine Rules

Subroutine Rules is not implemented yet.

B.l.n. Utilities
-V.

B.l.n(l). Subroutine DMInit

Same as subroutine DMInit in program C3EVAL. See section

B.2.a(2)

B.l.n(2). Subroutine Find

Same as subroutine Find in program C3EVAL. See section

B.2.e(l)

B.l.n(3). Subroutine GetTyp

Subroutine GetTyp searches a node name for any word that

occurs in the node dictionary. If an occurrence of a word in

node name is found then returns the type corresponding to the

dictionary entry. Otherwise, returns a string of blanks.

B.l.n.(4). Subroutine GetWord

Subroutine GetWord finds the first word that is contained in

a string. If the string passed in is blank then GetWord returns

blanks for the string and the word. Otherwise, the first word

within the string is found and saved in IWORD. Then the word is

* 11

1*- * -.-;- * * *

-removed from the string and GetWord returns the resulting string

and IWORD.

B..n(5). Subroutine Gimme

Same as subroutine Gimme in program C
3 EVAL. See section V

B.2.e(2).

B.l.n(6). Subroutine IntChr

Subroutine IntChr converts an integer to its ASCII

representation. The parameter ISize is the number of digits to

:. convert. Note that the maximum length of the string is 12

characters by declaration.

B.l.n(7). Subroutine POut

Same as subroutine POut in program C3EVAL. See section
B.2.e(3).

i.

B.l.n(8). Subroutine Release

Same as subroutine Release in program C3EVAL. See section':::B. 2.e (4).

B.l.n(9). Subroutine Restore

.. Same as subroutine Restore in program C
3 EVAL. See section -'-

B.2.e(5).

B.l.n(lO). Subroutine Save

Same as subroutine Save in program C3EVAL. See section

B.2.e(6).

9/

12S

S ' C"-*- *-

B.l.n(ll). Subroutine ScrLine

Subroutine ScrLine is used to create a string to output to a

scrolled line. The scrolled line contains 6 fields consisting

of: main node name, main node id, 1st alternate's name, 1st

* C,. alternate's id, 2nd alternate's name and 2nd alternate's id.

Each name is a string of 12 characters and each id is a string of

4 characters. Each name and id is found by using the appropriate

pointer to get the node's location in memory and then picking up

* the name and id from the appropriate offsets. When the resulting

string is passed to FMS it will be parsed and each value will be

- sent to the corresponding field.

B.1.n(12). Subroutine SetFlag

Subroutine SetFlag creates the data structure that contains

the print control flags, optional print modifiers, debug print

flag and debug print start and stop times. All values are

*initialized to zero. Since all flags are only 1 character but

are stored in 4 character fields the 1st character of the field

is initialized to zero. However, since the optional print

': modifiers and debug print start and stop times are 4 character

modifiers and debug print start and stop times are 4 character ,

* fields that are right justified the zero is in the last location.

-. B.l.n(13). Subroutine SnapQ

Subroutine SnapQ inserts an entire queue of records into

another queue of records. Assumes that all records in the queue

* *- being added have the same value being sorted on, therefore, they

- can be inserted as one large record. Note: A queue of one

record can be inserted by passing the same pointer for both the

top and bottom of the queue to be added. Assumes that there is a

• corresponding back pointer for the forward pointer. Assumes back

pointer is offset from its forward pointer by 1.

13

B.1.n(14). Subroutine UnSnap

Subroutine UnSnap removes an entry from a queue. Assumes

that there is a corresponding back pointer for each forward

pointer. Assumes back pointer is offset from its forward pointer

by 1. Sets forward pointer of previous node to next node. Sets

back pointer of next node to previous node.

B.1.n(15). Function Validl

Function Validl is a Field Completion User Action Routine.

Validl checks to see that the inputted value is between 1 and a

maximum value. The maximum value is dependent on the field that

is being read from. The maximum value is stored in Named Data

which is an FMS data structure.

141

".%.

4 -

B.1.O. Data Structures

I

15

R BLOCK NAME: MROOT BLOCK SIZ: 30
USE: Contains all root pointers for virtual

PN. memory

CREATED BY: PREPROC

ex DELETED BY: not applicable
ROOT: COMMON/LOCATEIMROOT DATE:

INDEX ELEMENT TYPE ELEMIENT

NAME MEANING/USE

*1PDICNI P NODE dictionary (sorted by TYPE)

2 PDICN2 P NODE dictionary (sorted by NAME)

3 PNODE P NODE queue

4 PREAMIB P Preamble documentation

5 PFLAG P Print control flags

LIL

16

BLOCK NAME: PDICN BLOCK SIZE: 6
USE: Dictionary of all valid node types. Each type

number has one or more unit names that
correspond to that type.

CREATED BY: NODEDIC
DELETED BY: DELDIC
ROOT: MROOT+O DATE:

INDEX FL2EMENT TYPE ELEMENT

NAME MEANING/USE

1 PDICN1 P Next dictionary entry (by TYPE)

2 PPREV1 P Previous dictionary entry (by TYPE)

3 PDICN2 P Next dictionary entry (by NAME)

4 PPREV2 P Previous dictionary entry (by NAME)

5 NAME P Dictionary entry

6 TYPE P Unit type of dictionary entry

- i m

S...:.

.

17

* -,

. *

BLOCK NAME: PNODE BLOCK SIZE: 10
USE: Queue containing all nodes for the scenario.

Each entry in the queue also has all
communication paths that pertain to the node.

CREATED BY: GETNAME, GETSCR, NODE
* DELETED BY: DELNODE

ROOT: MROOT+2 DATE:

INDEX ELEMENT TYPE ELENENT
NAME NMANING/USE

1 PNIDEF P Next NODE

2 PNODEB P Previous NODE

3 NAME C NODE name~

*4 UNIT I NODE number

5 TYPE C NODEtyp

6 PCMDR P NODE's commander

*-7 PCMIDRI P I st alternate for comimander

8 PCMDR2 P 2nd alternate for commander

*9 PSUBQ P NODE's subordinate queue

10 PCOMQ P NODE's network queue

18

BLOCK NAME: PS UBQ BLOCK SIZE: 5
USE: Queue of all subordinate communications

paths for a specified node. Each entry in the
queue can also have the two alternate
communications paths for the subordinate.

k- CREATED BY: NODE

DEL ETED By: DELNODE
ROOT: PNODE+8 -DATE:

INDEX EEMENT TYPE ELEMEMNT
NAME MEANING/USE

I PSUBQF P Next subordinate

2 PSUBQB P Previous subordinate

3 PSUB P NODE's subordinate

4 PSUB 1 P 1st alternate for subordinate

5 PSUB2 P 2nd alternate for subordinate

OF

BLOCK NAME: PCOMQ BLOCK SIZE: 5

USE: Queue of all other communications paths for
a specified node. Each entry in the queue can
also have the two alternate communications
paths.

2 CREATED BY: NODE
DELETED BY: DELNODE
ROOT: PNODE+9 DATE:

INDEX ELEMENT TYPE EEMENT
NAME MEANING/USE

1 PCOMQF P Next network NODE

2 PCOMQB P Previous network NODE

3 PCOM P Network NODE

4 PCOM1 P 1st alternate for network NODE

5 PCOM2 P 2nd alternate for network NODE

20i

. ,.

' U%

..

." o20

' BLOCK NAME: PREAMB BLOCK SIZE: 3
USE: Linked list of preamble documentation

lines. Each line is 60 characters long.

CREATED BY: PREAM
DELEE BY: not applicable
ROOT: MROOT+3 DATE:

INDEX ELEMIENT TYPE ELEMENT

NAME -MANING/USE

I . PREAMBF P Pointer to next line

2 PREAMBB P Pointer to previous line

3 LINE C*60 Line of documentation

I~~21

. BLOCK NAME: PFLAG BLOCK SIZE: 26
USE: List of all print control flags, optional output

modifier times, debug output flag and debug
output start and stop times. NOTE (for all
flags): 0-- > OFF, 1-- > ON.

57 CREATED BY: SETFLAG
, -' DEIETED BY: not applicable

ROOT: MROOT+4 DATE.

INDEX ElEMENT TYPE ELEMENT

NAME MEANING/USE

1 FLAGI C*1 All messages at alternate dest.
2 FLAG2 C* 1 All messages on input queues
3 FLAG3 C*I All messages on output queues
4 FLAG4 C* 1 All messages on future queues

U 5 FLAG5 C*1 All messages being held
6 FLAG6 C*1 All messages being deleted

* " 7 FLAG7 C*1 Status of rule stracture
8 FLAG8 C*1 CAS take off scheduled

FLAG9 C"1 not assigned
10 FLAGIO C*l not assigned
I I FLAG1 1 C*1 Tracked messages at alternate dest.
12 FLAG12 C*1 Tracked messages on input queues
13 FLAG 13 C*1 Tracked messages on out queues

14 FLAG14 C*1 Time T output on file 14 required
15 FLAG15 C*1 Combat loss vector
16 FLAG16 C*1 Force ratio calculations
17 FLAG17 C*I Rule status at final time
18 FLAG18 C*1 not assigned
19 FLAG19 C*1 Random processing required
20 FLAG20 C* 1 Used internally for sum of flags

- 21 MODI C*4 Optional output restricted to this node

22 MOD2 C*4 Optional output starts at this time
23 MOD3 C*4 Optional output stops at this time
24 DEBUG1 C*I Debug output flag
25 DEBUG2 C*4 Debug output start time
26 DEBUG3 C*4 Debug output stop time

A o2

°

• ,-',' '- ,, '" ' .. , " . ' . '. " .' . '0,.., ' o.-% •., o . -' ',.' -" ,. ,. ". . .•. .•,22, .

B.l.p. Program Notes

Most of the interfacing with the screen is accomplished by

using FMS provided routines and structures. One tool provided by

r . FMS is a Field Completion User Action Routine. A field com-

pletion UAR is a function that is called by FMS when the user

completes his entry for a field. The function can then process

the value that the user input to determine if it is a legal

entry. The function returns a value which tells FMS to either

accept the user input or to get another value from the user.

Named Data is another tool provided by FMS. These are data

values that have names so that they can be accessed by an FMS

command. This way values can be associated with particular

. fields but not hard-wired into the actual code. More detailed

information on UAR's, Named Data, or any of the FMS provided

routines can be obtained from VAX manuals on FMS.

-.2

S•.

A, •

........... . . °. - . . . -° .,,

B.1.q.Internal Code Documentation

III..

U)% a

24

i PROGRAM PREPROC

PURPOSE: CREATE DATA FILE TO BE USED AS INPUT FOR
PROGRAM C3EVAL

INITIALIZE FMS
IF WORKFILE EXISTS LOAD DYNAMIC MEMORY ELSE INITIALIZE
DYNAMIC MEMORY
PROCESS ALL MENU REQUESTS
SAVE CONTENTS OF MEMORY AND COMMON'S
CREATE OUTPUT FILE
CLEAN UP

i SUBROUTINE ACDATA
*- SUBROUTINE IS NOT IMPLEMENTED YET
1 SUBROUTINE BROWSE(NWORD, FLAG)

PURPOSE: USED WHEN EDITING NODE DICTIONARY. MOVES UP OR DOWN ONE
SCREEN, I.E. GETS ENTRIES CORRESPONDING TO PREVIOUS OR NEXT TY

* "PARAMETERS:
NWORD - OFFSET TO COMPARE ON
FLAG -- DIRECTIONAL FLAG

0 -' SEARCH DOWN
1 - SEARCH UP

IF NO NEXT ENTRY THEN SEND APPROPRIATE PROMPT
SET TOP TO NEXT ENTRY
FIND ALL ENTRIES OF SAME TYPE AS TOP
SET BOTTOM TO LAST ENTRY OF SAME TYPE AS TOP

IF SEARCHING UP THEN SWITCH TOP AND BOTTOM POINTERS AND
SUBTRACT ONE TO GET FORWARD POINTERS INSTEAD OF PREVIOUS

*. POINTERS.

1 SUBROUTINE CBDATA
SUBROUTINE IS NOT IMPLEMENTED YET

.i. SUBROUTINE COMMNET
SUBROUTINE IS NOT IMPLEMENTED YET

1 SUBROUTINE DELDIC

PURPOSE: DELETE ALL ENTRIES IN NODE DICTIONARY CORRESPONDING TO
CURRENT TYPE, I.E. ALL ENTRIES ON SCREEN.

TOP AND BOTTOM ARE POINTERS TQ THE FIRST AND LAST ENTRIES
OF THE CURRENT TYPE.

DO FOR ALL ENTRIES BETWEEN TOP AND BOTTOM
UNSNAP CURRENT ENTRY FROM DICTIONARY QUEUE BY TYPE
UNSNAP CURRENT ENTRY FROM DICTIONARY QUEUE BY NAME
RETURN VIRTUAL MEMORY SPACE FOR FURTHER USE

" A SUBROUTINE DELNODE(PNODE)

. PURPOSE: DELETE A NODE FROM THE NODE QUEUE

PARAMETERS:
PNODE -- POINTER TO NODE TO DELETE

N SET NODE TYPE TO BLANKS
REMOVE POINTERS TO COMMANDER AND IT'S ALTERNATES
REMOVE ALL ENTRIES FROM NODE'S SUBORDINATE QUEUE AND RELEASE

MEMORY F'ACE FOR FUTURE USE.
REMOVE ALL ENTRIES FROM NODE'S NETWORK QUEUE AND RELEASE
MEMORY SPACE FOR FUTURE USE.

REMOVE MAIN NODE FROM QUEUE; MARK MAIN NODE AS DELETED;
RESORT MAIN NODE INTO QUEUE
SUBROUTINE DMINIT(MEMORYMPTR. IGBPTRMAXDM)

INITIALIZE DYNAMIC MEMORY

INITIALIZE MEMORY POINTER
INITIALIZE GARBAGE POINTER
CLEAR DYNAMIC MEMORY
SUBROUTINE EXTMSG
SUBROUTINE IS NOT IMPLEMENTED YET

"i SUBROUTINE FILEOUT

• PURPOSE: CREATE OUTPUT FILE FOR FURTHER USE BY PROGRAM C3EVAL

OPEN OUTPUT FILE
OUTPUT PREAMBLE DOCUMENTATION
DO FOR ALL ENTRIES IN QUEUE
OUTPUT CURRENT LINE
OUTPUT LINE THAT SIGNALS END OF PREAMBLE DOCUMENTATION
OUTPUT HEADER LINE FOR PRINT FLAGS
OUTPUT PRINT CONTROL FLAGS, OPTIONAL OUTPUT TIMES, AND DEBUG
OUTPUT FLAG
OUTPUT DEBUG START AND STOP TIMES
WRITE INPUT MODE AND HEADER LINE
DO FOR ALL ENTRIES IN NODE QUEUE
GET NODE'S UNIT NUMBER AND TYPE
GET UNIT NUMBER OF COMMANDER
GET UNIT NUMBER OF 1ST ALTERNATE FOR COMMANDER

* GET UNIT NUMBER OF 2ND ALTERNATE FOR COMMANDER
SET COMMANDER AND SUBORDINATE FLAGS, APPROPRIATELY
OUTPUT NODES COMMANDER AND ITS ALTERNATES
SET COMMANDER AND SUBORDINATE FLAGS, APPROPRIATELY
DO FOR ALL ENTRIES IN SUBORDINATE QUEUE

' GET UNIT NUMBER OF SUBORDINATE
GET UNIT NUMBER OF IST ALTERNATE FOR SUBORDINATE

- GET UNIT NUMBER OF 2ND ALTERNATE FOR SUBORDINATE
• OUTPUT NODES SUBORDINATE AND IT'S ALTERNATES

SET COMMANDER AND SUBORDINATE FLAGS, APPROPRIATELY
DO FOR ALL ENTRIES IN NETWORK QUEUE
GET UNIT NUMBER OF NETWORK NODE
GET UNIT NUMBER OF 1ST ALTERNATE FOR NETWORK NODE
GET UNIT NUMBER OF 2ND ALTERNATE FOR NETWORK NODE
OUTPUT NODES NETWORK NODE AND IT'S ALTERNATES
CLOSE OUTPUT FILE
SUBROUTINE FIND(PIN, N, ID, POUT)

"**FIND A POINTER IN A QUEUE

* INPUT
* PIN - POINTER TO TOP OF QUEUE TO BE SEARCHED

" * N - OFFSET FROM PIN TO COMPARE
* ID - VALUE TO MATCH WITH N

* CREATES
* POUT - POINTER TO DESIRED ELEMENT

, : .: . i~i. -wiW i'' l . '* - -..- , -.. ,...K ,* >-, -- .- :..

DO FOR ALL QUEUE ELEMENTS
COMPARE VALUES

GET NEXT ELEMENT
END OF SEARCH

3. SUBROUTINE FINDDIC

PURPOSE: FIND ALL ENTRIES IN NODE DICTIONARY CORRESPONDING
TO INPUTTED TYPE.

GETS A STRING FROM THE USER CORRESPONDING TO THE TYPE NUMBER
TO SEARCH FOR

FINDS FIRST ENTRY OF INPUTTED TYPE AND STORES POINTER IN TOP
FIND ALL DICTIONARY ENTRIES OF SAME TYPE
STORE POINTER TO LAST ENTRY OF INPUTTED TYPE IN BOTTOM
SUBROUTINE FINDNODE

PURPOSE: SEARCH NODE QUEUE FOR USER INPUTTED NODE.

GET NODE NAME TO SEARCH FOR
SEARCH FOR NODE NAME

IF NODE NAME IS NOT IN NODE QUEU THEN ERROR ELSE SET CURRENT
POSITION POINTER TO NODE JUST FOUND

SUBROUTINE GETNAME(FLDNAM, FLDIDX, FLDTRM, PTEMP)

PURPOSE: GETS FROM THE USER A VALID NODE NAME.

PARAMETERS:,
FLDNAM -- NAME OF FIELD TO INPUT FROM
FLDIDX -- INDEX OF FIELD
FLDTRM -- VALUE OF FIELD TERMINATOR KEY
PTEMP -- POINTER TO NODE

GET NODE NAME FROM USER. IF NULL ENTRY THEN RETURN NILL POINTER.
NODE DOESN'T EXIST, THEREFORE, CREATE NEW NODE
ILLEGAL NAME: TRY AGAIN
LEGAL NAME: SAVE NAME, NUMBER AND TYPE

!SNAP INTO QUEUE
OUTPUT NODE'S UNIT NUMBER TO APPROPRIATE ID FIELD

1 SUBROUTINE GETNEW(PROOT,LENGTH, FLDNAM, FLDIDX, FLDVAL, FLDTRM)

PURPOSE: GET UNIQUE ENTRY FROM USER.

PARAMETERS:
PROOT -- ROOT OF QUEUE TO GET UNIQUE ENTRY FOR
LENGTH -- OFFSET FROM PROOT TO COMPARE
FLDNAM -- NAME OF FIELD TO INPUT FROM
FLDIDX -- INDEX OF FIELD TO INPUT FROM
FLDVAL -- VALUE INPUTTED FROM FIELDFLDTRM -- FMS VALUE OF TERMINATOR KEY

GET ENTRY FROM USER. IF FIELD INDEX IS 0 THEN DON'T PASS
TO FMS ROUTINE GET.
SEARCH QUEUE FOR ENTRY
SUBROUTINE GETSCR (FLDNAM, FVALUE , FLDTRM, PTEMP, PTEMP1,PTEMP2)

PURPOSE: GETS FROM THE USER A SEQUENCE OF VALID NODE NAMES
• . ,,, . . -, -, . ., . - .. ,.-, .,. -*-"-. ''* .-- " ... 5----,-, ,- ,,.. '.' ,,-," ,. , .

4

FROM A SCROLLED AREA.

PARAMETERS:
FLDNAM -- NAME OF FIELD TO INPUT FROM
FVALUE - VALUES INPUTTED INTO FIELDS
FLDTRM -- VALUE OF FIELD TERMINATOR KEY
PTEMP -= POINTER TO NODE
PTEMP1 - POINTER TO 1ST ALTERNATE NODE
PTEMP2 - POINTER TO 2ND ALTERNATE NODE

INITIALIZE POINTERS TO ZERO

IF ALL FIELDS ARE BLANK THEN RETURN NILL POINTER.
IF MAIN FIELD IS BLANK BUT ALTERNATE FIELD IS NON-BLANK
THEN SEND ERROR MESSAGE AND GET INPUT AGAIN.

PROCESS NODE NAME

NODE DOESN'T EXIST, THEREFORE, CREATE NEW NODE
ILLEGAL NAME: TRY AGAIN
LEGAL NAME: SAVE NAME, NUMBER AND TYPE
SNAP INTO QUEUE
SET UNIT NUMBER OF MAIN NODE

IF THERE IS A 1ST ALTERNATE THEN PROCESS 1ST ALTERNATE.
IF NO 1ST ALTERNATE AND NO 2ND ALTERNATE THEN BRANCH TO
OUTPUT SECTION.

IF NO IST ALTERNATE BUT 2ND ALTERNATE THEN ERROR - GET
INPUT AGAIN.

3, PROCESS IST ALTERNATE

NODE DOESN'T EXIST, THEREFORE, CREATE NEW NODE '
ILLEGAL NAME: TRY AGAIN
LEGAL NAME: SAVE NAME, NUMBER AND TYPE
SNAP INTO QUEUE
SET UNIT NUMBER OF IST ALTERNATE

. IF THERE IS A 2ND ALTERNATE THEN PROCESS 2ND ALTERNATE
ELSE BRANCH TO OUTPUT SECTION

S"PROCESS 2ND ALTERNATE

NODE DOESN'T EXIST, THEREFORE, CREATE NEW NODE
ILLEGAL NAME: TRY AGAIN
LEGAL NAME: SAVE NAME, NUMBER AND TYPE
SNAP INTO QUEUE
SET UNIT NUMBER OF 2ND ALTERNATE
OUTPUT LINE TO APPROPRIATE SCROLLED AREA
SUBROUTINE GETTYP(FLDVALITYPE)

- PURPOSE: SEARCHES NODE NAME FOR ANY WORD THAT OCCURS IN NODE
DICTIONARY.

PARAMETERS:
FLDVAL -- NODE NAME
ITYPE -- UNIT TYPE OF FLDVAL

28

DO FOR EACH WORD IN NODE NAME
GET NEXT WORD FROM STRING. SEARCH DICTIONARY.
FOUND WORD IN DICTIONARY; SAVE TYPE
DID NOT FIND WORD IN DICTIONARY; SET TYPE TO BLANKS
SUBROUTINE GETWORD(FVALUE, IWORD)

PURPOSE: FINDS THE FIRST WORD CONTAINED IN A STRING.

PARAMETERS:
(INPUT)

" FVALUE -- STRING CONTAINING WORDS
(OUTPUT)
FVALUE -- INITIAL VALUE WITH 1ST WORD REMOVED

. IWORD -- 1ST WORD CONTAINED IN FVALUE

IF ALL BLANKS THEN NO WORD IN STRING
REMOVE LEADING BLANKS
IF LOCATION OF BLANK IS 0 THEN NO BLANK FOUND AND WORD IS ENTIRE

STRING. OTHERWISE, WORD IS ALL LOCATIONS IN STRING PRECEDING
LOCATION OF BLANK.

SUBROUTINE GIMME(NPTR, LEN, ISPACE)

SEGMENT GET VIRTUAL SPACE

PARAMETERS:NPTR - POINTER TO BLOCK ALLOCATED

LEN -- LENGTH OF BLOCK TO ALLOCATE
ISPACE -- VIRTUAL MEMORY TO GET BLOCK FROM

SEARCH GARBAGE LIST
DO UNTIL LIST ENDS

IF (SIZE.EQ.LENGTH) THEN
SET PTR TO FIRST BLOCK

-' SNAP GARBAGE PTR
ALLOCATE VIRGIN STORAGE

,. UPDATE VIR SPACE PTR
" STORAGE OVERFLOW

ZERO SPACE BLOCK
END SEGMENT
SUBROUTINE HCDATA
SUBROUTINE IS NOT IMPLEMENTED YET
SUBROUTINE INSTRUC

PURPOSE: PUT FORM CONTAINING INSTRUCTIONS ON SCREEN.
PUT INSTRUCTION FORM ON SCREEN
WAIT FOR USER TO HIT (RETURN>
SUBROUTINE INTCHR(VALUE, ISIZE, STRING)

PURPOSE: CONVERTS AN INTEGER TO ITS ASCII REPRESENTATION.

C PARAMETERS:
VALUE -- , INTEGER VALUE TO CONVERT
LENGTH -- , NUMBER OF DIGITS TO CONVERT
STRING -- ASCII REPRESENTATION OF VALUE

SUBROUTINE LIMITS
SUBROUTINE NOT IMPLEMENTED YET
SUBROUTINE MENU

29."-,

PURPOSE: ALLOWS USER TO SELECT WHICH FUNCTIONS ARE IMPLEMENTED
IN THE PREPROCESSOR.

PUT MAIN MENU ON SCREEN
GET MODE FROM USER AND CONVERT TO INTEGER
GET OPTION FROM USER AND CONVERT TO INTEGER
SUBROUTINE NODE

PURPOSE: USED TO CREATE AND EDIT THE NODE DATA SET.

FMS TERMINATOR CODES

******* CREATE MODE *

GET MAIN NODE

NODE NAME MUST BE UNIQUE AND MUST CONTAIN ONE WORD WHICH

IS IN THE NODE DICTIONARY.

STORE NAME, NUMBER, AND TYPE
SNAP INTO QUEUE -

PROCESS FIELD TERMINATOR

GET COMMANDER

SAVE POINTER TO COMMANDER

* PROCESS FIELD TERMINATOR

GET 1ST ALTERNATE FOR COMMANDER

IF NO COMMANDER THEN SEND MESSAGE; REMOVE 1ST ALTERNATE FROM
SCREEN; BRANCH TO GET COMMANDER

SAVE POINTER TO 1ST ALTERNATE

PROCESS FIELD TERMINATOR

GET 2ND ALTERNATE FOR COMMANDER

IF NO COMMANDER THEN SEND MESSAGE; REMOVE 2ND ALTERNATE FROM
SCREEN; BRANCH TO GET COMMANDER

IF NO IST ALTERNATE THEN SEND MESSAGE; REMOVE 2ND ALTERNATE
FROM SCREEN; BRANCH TO GET IST ALTERNATE

SAVE POINTER TO 2ND ALTERNATE

PROCESS FIELD TERMINATOR

GET SUBORDINATE AND ITS ALTERNATES

GET USER ENTRY
VERIFY ENTRIES...-.

.

IF PSUB IS 0 THEN NULL ENTRY, THEREFORE, NO MORE SUBORDINATES
ADD SUBORDINATE TO BOTTOM OF QUEUE *

. PROCESS FIELD TERMINATOR

GET NETWORK NODES

GET USER ENTRY
VERIFY ENTRIES
IF PCOM IS 0 THEN NULL ENTRY, THEREFORE, NO MORE NETWORK NODES
ADD NETWORK NODE TO BOTTOM OF QUEUE

PROCESS FIELD TERMINATOR

"!!i ***** EDIT MODE *******

PRINT MAIN NODE AND ID
PRINT COMMANDER AND ID
PRINT 1ST ALTERNATE FOR COMMANDER AND ID
PRINT 2ND ALTERNATE FOR COMMANDER AND ID
PRINT SUBORDINATES AND THEIR ALTERNATES AND ID'S
PRINT OTHER NETWORK NODES AND THEIR ALTERNATES AND ID'S

* GET NAME AND INDEX OF CURRENT FIELD. SAVE OLD VALUE.

GET ENTRY FROM USER

IF ENTRY EQUALS OLD VALUE THEN NO CHANGE - BRANCH TO PROCESS
FIELD TERMINATOR

CHANGE MAIN NODE NAME

MAIN NODE NAME MUST BE UNIQUE
DETERMINE IF NAME IS VALID, I.E. UNIT WORD OCCURS IN DICTIONARY

*LEGAL NAME - SAVE NAME AND TYPE

CHANGE COMMANDER OR IT'S ALTERNATES

LENGTH IS THE OFFSET FROM CURPOS FOR THE POINTER FOR
EITHER THE COMMANDER OR IT'S ALTERNATES

PROCESS BLANK ENTRY

IF ENTRY WAS IN COMMANDER FIELD:
IF NO ALTERNATES THEN IT IS LEGAL TO DELETE COMMANDER.
IF ALTERNATES EXIST THEN SEND MESSAGE, PUT OLD VALUE FOR
COMMANDER BACK ON SCREEN, AND BRANCH TO PROCESS FIELD
TERMINATOR KEY.

IF ENTRY WAS IN 1ST ALT. FOR COMMANDER FIELD:
IF NO 2ND ALTERNATE THEN IT IS LEGAL TO DELETE 1ST ALTERNATE.

IRIF 2ND ALTERNATE EXISTS THEN SEND MESSAGE, PUT OLD VALUE FOR
ri* 1ST ALT. BACK ON SCREEN, AND BRANCH TO PROCESS FIELD TERMINATOR

KEY.
- -,%% % ',' ,.'..- 'i". ." .14'.,,'..': -"" .".' .- '%-" -- ".-".%' ' ,'.' '.. ' .-... ,''.'''''-.. ''' . . .

PROCESS A NON-BLANK ENTRY

IF ENTRY WAS IN IST ALT. FOR COMMANDER FIELD:
IF COMMANDER EXISTS THEN IT IS LEGAL TO ADD IST ALTERNATE.
IF NO COMMANDER THEN SEND MESSAGE, REMOVE 1ST ALTERNATE FROM
SCREEN, AND BRANCH TO PROCESS FIELD TERMINATOR KEY.

IF ENTRY WAS IN 2ND ALT. FOR COMMANDER FIELD:
IF 1ST ALTERNATE EXISTS THEN IT IS LEGAL TO ADD 2ND ALTERNATE.
IF NO 1ST ALTERNATE THEN SEND MESSAGE, REMOVE 2ND ALTERNATE
FROM SCREEN, AND BRANCH TO PROCESS FIELD TERMINATOR KEY. .

DETERMINE IF NAME IS UNIQUE
ENTRY DOESN'T EXIST; CHECK IF VALID NAME, I.E. UNIT WORD
OCCURS IN DICTIONARY

CREATE NODE
SAVE POINTER TO NODE
WRITE NEW ID TO SCREEN AND BRANCH TO PROCESS FIELD TERMINATOR KEY

CHANGE SUBORDINATE AND ALTERNATES

GET SUBORDINATE NAME FROM FIELD
GET IST ALTERNATE FROM FIELD
GET 2ND ALTERNATE FROM FIELD
VERIFY ENTRIES

ADDING NEW ENTRIES

CREATE NEW ENTRY FOR SUBORDINATE QUEUE
SET BACK POINTER OF NEW ENTRY TO LAST ENTRY OF QUEUE
SET SUBORDINATE AND ALTERNATE POINTERS TO APPROPRIATE VALUES

. IF QUEUE IS EMPTY THEN ADD NEW ENTRY TO TOP ELSE ADD TO BOTTOM
BRANCH TO PROCESS FIELD TERMINATOR KEY

CHANGING EXISTING ENTRIES

BRANCH TO PROCESS FIELD TERMINATOR KEY

CHANGE NETWORK NODES AND ALTERNATES

GET NETWORK NAME FROM FIELD
GET 1ST ALTERNATE FROM FIELD
GET 2ND ALTERNATE FROM FIELD

*--" VERIFY ENTRIES

ADDING NEW ENTRIES

CREATE NEW ENTRY FOR NETWORK QUEUE
SET BACK POINTER OF NEW ENTRY TO LAST ENTRY OF QUEUE
SET NETWORK AND ALTERNATE POINTERS TO APPROPRIATE VALUES
IF QUEUE IS EMPTY THEN ADD NEW ENTRY TO TOP ELSE ADD TO BOTTOMBRANCH TO PROCESS FIELD TERMINATOR KEY 5-S

CHANGING EXISTING ENTRIES

PROCESS FIELD TERMINATOR

SUBROUTINE NODEDIC

32I

PURPOSE: CREATE AND EDIT ENTRIES WITHIN THE NODE DICTIONARY.

FMS TERMINATOR CODES

* ***** **** CREATE MODE *
GET TYPE
GET NAMES
SORT BY TYPE
SORT BY NAME

(.. ********** EDIT MODE ********

SET TOP TO FIRST ENTRY IN DICTIONARY. SET BOTTOM TO LAST ENTRY
THAT HAS SAME TYPE AS FIRST ENTRY.r%. INITIALIZE FIELDS

CHANGE EXISTING NAME
ADD NEW NAME
SORT BY TYPE
SORT BY NAME
IF NEW NAME WAS ADDED BEFORE FIRST ENTRY OF IT'S TYPE
THEN UPDATE POINTER TO TOP
IF NEW NAME WAS ADDED AFTER LAST ENTRY OF IT'S TYPE
THEN UPDATE POINTER TO BOTTOM

CHANGE EXISTING TYPE
RESORT TYPE
PROCESS FIELD TERMINATOR

"A SUBROUTINE POUT(MEMORY, NUM, LENGTH)

PURPOSE:
PRINT OUT CONTENTS OF VIRTUAL MEMORY

PARAMETERS:
MEMORY -' VIRTUAL MEMORY TO PRINT
NUM -, NUMBER OF LINES TO PRINT
LENGTH -- , NUMBER OF VALUES TO PRINT PER LINE

4 SUBROUTINE PREAM

PURPOSE: ALLOW USER TO CREATE AND EDIT THE PREAMBLE
DOCUMENTATION.

FMS TERMINATOR KEYS

*** CREATE MODE **

CLEAR DISPLAY AND PUT THE FORM FOR THE PREAMBLE ON THE SCREEN
INITIALIZE THE CURRENT FIELD NAME AND INDEX
DO UNTIL USER HITS <RETURN) KEY
GET USER ENTRY FROM CURRENT FIELD
FIRST ENTRY - SAVE VALUE; SET ROOT POINTER
QUEUE NOT EMPTY - SAVE VALUE; ADD TO BOTTOM OF QUEUE

1% PROCESS FIELD TERMINATOR

IF <TAB> KEY THEN SET CURRENT FIELD TO NEXT FIELD
IF <RETURN) KEY THEN BRANCH TO END OF SUBROUTINE

. EDIT MODE *
-SS ~-* .*' ' , ","]5,* ,*

IF QUEUE IS EMPTY THEN CANNOT EDIT; BRANCH TO END OF
SUBROUTINE

CLEAR DISPLAY AND PUT THE FORM FOR THE PREAMBLE ON THE SCREEN
INITIALIZE POINTER TO TOP OF QUEUE; INITIALIZE CURRENT FIELD
NAME AND INDEX
PUT EXISTING DOCUMENTATION ON SCREEN
SET POINTER TO TOP OF QUEUE AND FIELD INDEX TO ONE
DO UNTIL USER HITS <RETURN> KEY
GET USER ENTRY FROM CURRENT FIELD
NEW LINE - SAVE VALUE; ADD ENTRY TO BOTTOM OF QUEUE; UPDATE
POINTER TO LAST LINE; BRANCH TO PROCESS FIELD TERMINATOR p.

OLD LINE - UPDATE VALUE

PROCESS FIELD TERMINATOR

IF 'TAB> KEY THEN SET CURRENT FIELD TO NEXT FIELD
IF <BACKSPACE> KEY THEN SET CURRENT FIELD TO PREVIOUS FIELD
IF (RETURN> KEY THEN BRANCH TO END OF SUBROUTINE
SUBROUTINE QPRINT(PROMPT)

PURPOSE: PRINT OUT CONTENTS OF NODE DICTIONARY QUEUE

PARAMETERS:
PROMPT -- HEADER STRING TO OUTPUT ALONG WITH CONTENTS

OF NODE DICTIONARY QUEUE.

OUTPUT HEADER PROMPT
DO FOR ALL ENTRIES IN NODE DICTIONARY QUEUE
OUTPUT FORWARD AND BACKWARD POINTERS FOR BOTH TYPE AND NAME
SORTING. OUTPUT TYPE AND NAME.

SUBROUTINE RELEAS(NPTR, LEN, ISPACE)

*SEGMENT RELEASE PUTS STORAGE ON GARBAGE LIST

PARAMETERS:
NPTR -- POINTER TO BLOCK TO RELEASE
LEN - LENGTH OF BLOCK TO RELEASE "
ISPACE -- , VIRTUAL MEMORY BLOCK IS CONTAINED IN

CHECK BAD PTR, LEN
DO UNTIL NO GARBAGE EQUAL LENGTH
END DO
SNAP IN SPACE
GARBAGE LENGTH NOT KNOWN
PUT STORAGE ON GARBAGE LIST
END SEGMENT
SUBROUTINE RESTORE

* DYNAMIC MEMORY AND COMMON VALUES ARE READ FROM A FILE
* INTO MEMORY AS PHYSICAL STRUCTURES. THIS FILE IS
* CREATED BY SUBROUTINE STORE.

RESTORE COMMON VARIABLES
RESTORE DYNAMIC MEMORY
SUBROUTINE RULES
SUBROUTINE IS NOT IMPLEMENTED YET
SUBROUTINE SAVE

* DYANMIC MEMORY AND COMMON VALUES ARE WRITTEN TO A FILE
* AS PHYSICAL STRUCTURES. THIS FILE MAY BE USED TO
* RESTART THE SIMULATION AT THE POINT WHERE IT LEFT OFF.

SAVE COMMON VARIABLES
SAVE DYNAMIC MEMORY
SUBROUTINE SCRBK(FLDNAM, POS, BOTTOM, LINE)

PURPOSE: SCROLL A SCROLLED AREA BACKWARD

PARAMETERS:
FLDNAM "' NAME OF FIELD IN SCROLLED AREA TO SCROLL
POS -- POINTER TO NODE THAT IS DISPLAYED ON THE

CURRENT LINE OF THE SCROLLED AREA.
BOTTOM -> POINTER TO NODE THAT IS DISPLAYED ON THE

LAST LINE OF THE SCROLLED AREA.
LINE LINE NUMBER OF THE CURRENT LINE OF THE

SCROLLED AREA.

IF NO LAST LINE OF SCROLLED AREA THEN NO NODES ARE DISPLAYED
IF CURRENT LINE IS BLANK THEN CURRENT LINE IS BELOW LAST
DISPLAYED LINE. THEREFORE, SET CURRENT LINE TO LAST
DISPLAYED LINE.
IF CURRENT NODE IS TOP OF QUEUE THEN SEND MESSAGE ELSE
SET CURRENT NODE TO PREVIOUS NODE

STOP OF SCROLLED AREA *

WRITE SCROLLED LINE TO SCREEN

* ~~ NOT TOP OF SCROLLED AREA *

MOVE CURRENT LINE OF SCROLLED AREA UP ONE LINE
SUBROUTINE SCRFWD(FLDNAM, POS,BOTTOM,LINE)

PURPOSE: SCROLL A SCROLLED AREA FORWARD

PARAMETERS:
FLDNAM -, NAME OF FIELD IN SCROLLED AREA TO SCROLL
POS -- , POINTER TO NODE THAT IS DISPLAYED ON THE

CURRENT LINE OF THE SCROLLED AREA.
BOTTOM -- POINTER TO NODE THAT IS DISPLAYED ON THE

LAST LINE OF THE SCROLLED AREA.
LINE -- LINE NUMBER OF THE CURRENT LINE OF THE

SCROLLED AREA

IF NO LAST LINE OF SCROLLED AREA THEN NO NODES ARE DISPLAYED
IF CURRENT LINE IS BLANK THEN DO NOT ALLOW TO SCROLL FORWARD
I.E. ONLY ONE BLANK LINE AT BOTTOM OF SCROLLED AREA CAN BE
USED TO INPUT NEW ENTRIES.

*** BOTTOM OF SCROLLED AREA **"

WRITE SCROLLED LINE TO SCREEN

" * NOT BOTTOM OF SCROLLED AREA

MOVE CURRENT LINE OF SCROLLED AREA DOWN ONE LINE
SUBROUTINE SCRLINE(POS,FVALUE)

PURPOSE: CREATE STRING TO OUTPUT TO THE CURRENT LINE OF
A SCROLLED AREA

PARAMETERS:
POS -- POINTER TO NODE TO CONVERT TO GET FIELD

VALUES FOR SCROLLED LINE. ,

FVALUE - FIELD VALUES FOR SCROLLED LINE.

NULL ENTRY, THEREFORE INITIALIZE TO BLANKS

k' INITIALIZE PORTION OF SCROLLED LINE THAT CONTAINS MAIN
NODE AND IT'S ID
INITIALIZE PORTION OF SCROLLED LINE THAT CONTAINS 1ST
ALTERNATE AND IT'S ID
INITIALIZE PORTION OF SCROLLED LINE THAT CONTAINS 2ND
ALTERNATE AND IT'S ID
SUBROUTINE SETFLAG

PURPOSE: CREATE FLAG NODE. INITIALIZE ALL VALUES TO ZERO.

GET VIRTUAL MEMORY SPACE
INITIALIZE 20 PRINT FLAGS
INITIALIZE THE 3 OPTIONAL PRINT MODIFIERS

INITIALIZE DEBUG PRINT FLAG, DEBUG TIME ON, AND DEBUG TIME OFF
I SUBROUTINE SIMCTRL

PURPOSE: ALLOW USER TO CHANGE VALUES OF PRINT FLAGS.

FMS TERMINATOR KEYS

CLEAR SCREEN AND PUT SIMULATION CONTROL FORM ON SCREEN

1, PUT VALUES IN APPROPRIATE FIELDS

.. GET USER ENTRY

ENTRY WAS A PRINT CONTROL FLAG

IF ENTRY NOT EITHER '0' OR '1' THEN ILLEGAL; RESTORE OLD VALUE;
GET ENTRY AGAIN
LEGAL ENTRY - SAVE NEW VALUE; BRANCH TO PROCESS FIELD TERMINATOR

ENTRY WAS AN OPTIONAL OUTPUT TIME - SAVE NEW TIME; BRANCH TO
PROCESS FIELD TERMINATOR

ENTRY WAS DEBUG OUTPUT FLAG

IF ENTRY NOT EITHER '0' OR '1' THEN ILLEGAL RESTORE OLD VALUE;
GET ENTRY AGAIN

R', LEGAL ENTRY - SAVE NEW VALUE; BRANCH TO PROCESS FIELD TERMINATOR

ENTRY WAS DEBUG ON/OFF TIME - SAVE TIME; BRANCH TO PROCESS FIELD
TERMINATOR

PROCESS FIELD TERMINATOR

SUBROUTINE SNAPQ(PTR, NWORD, PINS, PINE)

PURPOSE:
INSERT AN ENTIRE QUEUE OF RECORDS INTO ANOTHER QUEUE OF

RECORDS. ASSUMES THAT THERE IS A CORRESPONDING BACK POINTER
FOR THE FORWARD POINTER. ASSUMES BACK POINTER IS OFFSET FROM
ITS FORWARD POINTER BY 1.

PARAMETERS:
PTR -- ROOT OF BASE QUEUE
NWORD =- OFFSET FROM PTR TO SORT ON
PINS -= POINTER TO TOP OF QUEUE BEING ADDED
PINE --> POINTER TO BOTTOM OF QUEUE BEING ADDED

EMPTY QUEUE - MAKE FIRST RECORD

INSERT BEFORE RECORD

INSERT BEFORE 1ST RECORD

INSERT AFTER LAST RECORD

SUBROUTINE UNSNAP(NROOT, NPTR, ISPACE)

REMOVES AN ENTRY FROM QUEUE

SET FORWARD AND BACK POINTERS
IF NODE BEING REMOVED IS NOT IST NODE IN QUEUE THEN SET
FORWARD POINTER OF PREVIOUS NODE TO NEXT NODE.
IF NODE BEING REMOVED IS 1ST NODE IN QUEUE THEN SET ROOT
TO NEXT NODE -.
IF NODE BEING REMOVED IS NOT LAST NODE IN QUEUE THEN SET

BACK POINTER OF NEXT NODE TO PREVIOUS NODE.

S * * * ** * * * UAR ROUTINES *s********

~ZA'"4 INTEGER FUNCTION VALID.1

FIELD COMPLETION UAR CHECKS IF VALUE IS BETWEEN 1
AND THE MAXIMUM FOR THE APPROPRIATE FIELD.

GET FIELD NAME OF CURRENT FIELD
GET VALUE AT CURRENT FIELD
CONVERT VALUE TO INTEGER
GET MAXIMUM LEGAL VALUE FOR CURRENT FIELD
CONVERT MAXIMUM LEGAL VALUE TO INTEGER
IF CURRENT VALUE IS BETWEEN I AND MAXIMUM LEGAL VALUE

. THEN RETURN SUCCESS CODE ELSE SEND ERROR MESSAGE AND
RETURN FAILURE CODE. 37 !

j4

B.2. Program C3EVAL

There are three distinct elements simulated by C3EVAL.

The first is the C3 environment. It consists of a set of nodes

(command posts), paths (lines of communication), and processing

of messages and combat data. Figure 5 gives an example of a

command network that could be represented in the model. In this

example, Div units would be designated as the combat level units.

Each one has specific ground-based weapon systems (tanks, AAA,

infantry, etc.) specified for its own forces (Blue) and for its

opposing force (Red). In addition, a notional airbase has

aircraft (Blue only) which are requested by air tasking order

(ATO) messages for specific combat uits at a specified game time

interval. These weapon systems and aircraft sorties are the I-

second element.

The third element of C3EVAL is the combat process. This is

modeled by using IDA's anti-potential potential (APP) method of

calculating combat value and force ratios. Attrition is

calculated by multiplying the APP effectiveness matrix times each

unit's weapon system vector. The sequence of events in the model

-is:•

- Limit input messages

- Process messages received

- Create messages based on command post actions

- Limit output messages

- Allocate messages to network

- Put messages into communication status

- Process requests for CAS

- Update combat unit's weapon system

- Calculate combat drawdown

The C3 portion of C3EVAL has been implemented in a user-

controlled dynamic memory (DM) environment. This DM is a large

38

U°'

h..

~SHAPE
...

P " A T A F 'C E

CORPS C o, RPSCPS CORPS CORPS
AC/ASOC MAIN ATOC

COMMUNICATIONS LEGEND:
~1- SECURE VOICE

2. VOICE
3. DIGITAL DIV DIV -
4. COURIER TACP8-30-85-2L TAPTA i

Figur 5: -3 NTWOC

tip

4..

,'."4."9

single-dimension common area that is segmented, allocated, and

reused by two simple C3EVAL utilities. The effect of this imple-

mentation decision is a code that provides for a vast variation

in the number of nodes, paths, or messages that may be used from

different data bases and scenarios without major parameter

changes in the model. (Only the maximum size of DM is modified

S to provide efficient computer memory usage.)

This "dimensionless" code is further enhanced by the use of

linked lists of data structures in addition to the standard

common arrays. The utilities section of this manual describes

the DM subroutines and those that assist in the use of linked

lists. The combat force ratio calculations were extracted from

the IDA seven methods of evaluating forces based on antipotential

potential. This code uses explicit dimensions for the number of

different combat systems that will be evaluated. This size was

set to 11 distinct combat systems for the current model. .

The three functional modules controlled in C3EVAL as shown

in Figure 6 are entered through SUBROUTINES INPUT, EVENTS and

OUTPUT. The C3EVAL process starts with determination of the

" mode. (Initial run starting at time zero or restart run at Time

T). Interpretation of input and output unit numbers and setting

of DM to zero is accomplished for time zero runs. DM is zeroed

by the utility SUBROUTINE DMINIT. For Time T starts, SUBROUTINE

RESTOR is called to reset all dynamic memory and model para-

meters.

, . .- '.

40

v....-.....A,..- , ..,--

CEVAL

INPUTj EVENTS OUTPUT

INPUTC EXTMSG_ SAVE

INPUTA NODE__

I HA

AIROPS

LiCOMBAT

Figure 6. C 3 EVAL Modules

10-1 7-85-15M
Unclassified

414

-- l-' t-

SUBROUTINES INPUT and RULEIN are called for time zero runs

to establish the decision rules and initial conditions for C3 and

combat. Their operation is described in the next section.

SUBROUTINE EVENTS controls all C3 events, combat calculations,

and the game clock. After all requested simulated combat is

calculated, summary output is produced by OUTPUT and C3EVAL stops

the run. The hierarchy of subroutines is shown in Figure 7.

This figure does not show the attrition module subroutines or the

utilities.

B.2.a. Control Module

The main program C3EVAL performs all the top-level functions

of file interface, determination and control of the mode of oper-

ation, data input, event simulation and output. The input files

are:
C3DATA C3 descriptions

CBDATA Ground combat systems data

AODATA Aircraft operations data
C3RULE Decision Rule Data

RESTOR All data necessary to continue a previous run

The output files are:
C3ECHO Echo of input data
C3TIME All reports, error conditions, and debug data
C3SUM End of run summaries

SAVE All data necessary to restart from end of a run

TIMET Message flow data for each time increment

LOSST Combat losses for each unit for each time
increment

Temporary work files are:
C3NODE Changes to NODE data to occur during game

C3LMNO Changes to node input and output limits to occur

during the game.
C3LINK Changes to link capacities to occur during the

game.

42

-%!-A 6 _U 0 UI

Nd 0 U

00

00

0 4 --

U)U

0

.j

-J 0
00

IL-

U U)
02
Uz

00

0
u

1- 0U (5-
U)

0. U 0 0

zj z m0
(WF

I U)

z~ M0 --J z 2 U) 0

0 0. a-z m

C4 U.

0 <0 0
0 F 0

0L I-- OC

1 0 0 - >0 L

00

043
0

B.2.a(l). Subroutine CONTRL

CONTRL is called by C3EVAL to read the print and debug

parameters and to read the preamble from the C3DATA file. The

preamble is used to document the contents of the file, to easily
identify variations of a basic scenario and to assist in relating

other files and output to a specific run. The first 40 char-

acters of the top line of the preamble will appear as the sub-

title on all graphics. The preamble may contain as many lines of

80 characters as necessary. It must be completed with "END " as

the first four characters in the last line. Contrl copies the

preamble to files C3TIME, C3SUM and TIMET. The definitions of

the flags are shown in Figure 8 which is a PreProc screen. The

flags are echoed to file C
3ECHO.

PRINT CONTROL FLAG OPTIONAL OUTPUT

ALL MESSAGES AT ALTERNATE NODE 0 SPECIFIC NODE 0

ALL MESSAGES ON INPUT QUEUES 0 START TIME 0

ALL MESSAGES ON OUTPUT QUEUES 0 STOP TIME 0

ALL MESSAGES ON FUTURE QUEUES 0

ALL MESSAGES BEING HELD 0 DEBUG OUTPUT FLAG 0

ALL MESSAGES DELETED 0 START TIME 0

STATUS OF RULE STRUCTURE 0 STOP TIME 0

CAS TAKE OFF SCHEDULED 0

not assigned 0

not assigned 0

TRACKED MESSAGES AT ALTERNATE NODE 0

TRACKED MESSAGES ON INPUT QUEUES 0

TRACKED MESSAGES ON OUTPUT QUEUES 0
TIME T OUTPUT ON FILE 14 REQUIRED 0

COMBAT LOSS VECTORS 0
FORCE RATIO CALCULATIONS 0

RULE STATUS AT FINAL TIME 0 (NOTE% FOR FLAGS 0 --) OFF

not assigned 0 1 --> ON)

RANDOM PROCESSING REQUIRED 0
USED INTEPJ4LLY FOR SUM OF FLAGS 0

HIT <RETURN> TO RETURN TO MAIN MENU

Figure 8: PRINT AND DEBUG PARAMETERS

"'" 44

.'..,." -_.-.-...'..,.,.',j.-€'.-. ".-- . , .. , . • .o-,' '-,.'..," .°.', " '..................'.........'..... ...*.-

B.2.a(2). Subroutine DMINIT

DMINIT is called by C3EVAL when a game is to be started at

time zero. It prepared DM for use by initializing the next

available memory locator (MPTR) to 1 and setting all DM and the

garbage pointer to zero. The garbage pointer is the root of the

reuseable memory block queue.

B.2.b. Input Module

Input data is of two types. The basic scenario data (or

time zero data) is read by the Input Sub-routines and its sub-

ordinate routines. See Figure 9. The event (or Time T data) is

read by subroutines under control of the Events. See Figure 10.

The Block Data FRatio is included here because of its function.

It is not called by Input, of course.

Input INPUT

Block Data FRatio

-__INPUTA

InnutA
__':':___INPUTC

InputC
RULEIN

Ruleln V

RDRULE

EdRule

Figure 9: SCENARIO INPUT SUBROUTINES

45

...

-..-4-..''2-,"-.,."...... 2...:'.. %... .¢...>Ny... '-i'i-'i' ."'>''".

- a a- ,f °

t

Figure 1 TTEvents I

B.2bStaSurouinnIpu

! ExtMsq

- TInu

,- piChLi

:-', -- ChLink],

"7 _ ChNode ',

i Figure 10: TIME T INPUT SUBROUTINES

. [B.2.b(1). Subroutine Input'

SUBROUTINE INPUT reads node, link, and limits data in a

S manner that allows the user to build this file in alternative

"" styles, depending on the form most applicable to the analysis ".

• process. Data is read from a file identified by the variable INP.'

which is set to one in C3EVAL. The general form is to read a set

name line, a header of 80 characters, and then a line of data.

The first four characters are reserved to identify the type of

input involved. All data lines must have the first four char-

acters blank. This implies that this data line belongs to the

set identified by the last set name read. Set name lines must

5- have one of the following set names in the first four characters:

NODE, LMNO, LINK, or PROC in order to input that type of data.

S Anything other than blank as a set name will cause the input of

the data set to end (normally set to LAST). This allows the

Va 46

analyst to put all node data togeter in file INP or to have a

mixed sequence of set types and normally grouping NODE, LMNO,

LINK, and PROC data for each unit identified. A header line must

always follow immediately after a set name line. It may be used

as comments about the data or left blank.

In the program, the NODE set is located at the top of the

subroutine. The first time a new node number is read a NODE data

structure is created and unit number, identifier and type are

set. The same node number will be required on each data line

that identifies a different destination with which the node can

communicate. Each time a new node number is found it is linked

into the node queue which has its root in NODE1 in COMMON/C 3/. A

-, destination (DEST) data structure is created for each destination

identified. The DEST data structures are linked together in the

node's destination queue. The DEST data structure is initialized

- with its unit identifier and one or two destinations is the

node's commander, the commander's element in the node data

structure is set to that destination's unit identifier. If a

destination is a subordinate of the node, the subordinate flag is

-\ set in the node's DEST block. If the input value for the sub-

ordinate flag is equal to 2 then a subordinate status data struc-

ture is created and snapped into the node's subordinate status

queue.

The NODE data is read by format (A4, 815, 3A4, 24AI). The

first field is the data set type (NODE on the first line and

blank on all other). The 8 numbers are: time, unit, unit type,

* destination, alternate node 1, alternate node 2, commander flag

and subordinate flag. The flags indicate the relationship of the

* destination to the unit. The 3A4 field is the unit identifier

and the remaining data are comments (normally, the destination's

identifier). If time is greater than 1, the data line is written

to file C3NODE to be processed at the future time.

a.

5% 47

The next set in Input is LMNO, the LiMits for iNput and

Output. It is read by format (A4, 615, 45Al). The first field

is the data set type. The six numbers are: time, unit and four

message limits. If time is greater than 1, the data line is

written to file C3LMNO to be processed at the future time. The

. limits are: hold for input, delete for input, hold for output

and delete for output. The comment field may be used to document

the line (i.e., curtailed operation due to direct attack).

The next set in Input is LINK, which indicates the capacity

of each type of communication between two nodes. The format used

is (A4, 415, 110, 46A1). The first field is the data set type.

The five numbers are: time, unit, unit communications type, and

capacity. The last field is for comments. If time is greater

than 1, the line is written to file C3LINK. Notice that a link

has a node at each end and that these nodes must have been iden-

tified before any link information can be given. A particular

S link should be identified only once, and the input procedure for

the LINK set is indifferent which node of the link is given first

or second. A link line is required for each type of communica-

tions desired between each node pair. The LINK process finds the

data structure for the node identified on the link input line.

Then a LINK data structure is created and linked into the destin-

ation structure for the node. The type of link and its capacity

' are set in the link structure. This process is then repeated for

the node on the other end of this link. The final data set re-

cognized by Input is PROC. This type is not currently used and

" exists for compatability to earlier versions.

When a non-set name is found by Input, it branches to input

combat data. This is done by a call to INPUTC. Then air opera-

tions data is input via a call to INPUTA.

48,

. 48

~ .. * .

° ii
At this point, all data has been read in, but there is still

Nsome initialization required for all node and destination struc-
tures. The first step is to replace the commanding unit identi-

fier with a pointer to the commander's node data structure.

Next, the unit type in all destination data structures are ini-

tialized by finding that data in the destination's node struc-

ture. Finally, the alternate/s are located by their unit number

and the destination data elements for alternates are set to

pointers to the alternate's node structure.

B.2.b(2). Subroutine Inputa

This routine reads in air operation's data from file AODATA.

This file has a documentation preamble which is followed by a

comment line and one or more lines containing aircraft allocation

parameters. This line is read with format (A3, 6X, 616, 10A4).

"* If the first field is blank, the data is processed; if it is

equal to "LAS", the data set is terminated. The six numeric

parameters are; allocating node, message number that the para-

meters are to apply, initial allocation time, number of periods

to be used in the allocation process, the maximum number of

sorties for a flight, and the maximum sorties to be allocated

Sthroughout the specified periods. The last field is a comment

field. Inputa finds the node structure indicated, creates and

initializes an allocation structure, and snaps it into the nodes

allocation queue.

The next data set in AODATA identifies the CRC node. A

documentation header is read. The first data line contains the

CRC node number, the alert time, enroute time, the minimum number

of aircraft that constitutes a CAS sortie, and the probability of

survival enroute of the aircraft on a CAS mission. The following

data lines must be blank in the first three columns and contain

the WOC node identifier, the aircraft type, the time the aircraft

will be available, and the number of aircraft. THe AIROPS input

49

m*

is completed when the first three columns are set to "END".

The program creates the CRC structure and sets NCRC in
COMMON/C3/ to this data structure. It stores the CRC data values

in that structure. For each unique WOC read, a WOC structure is

created and the aircraft availability data is stored in the READY

and RDYQ structures.

B.2.b(3). Subroutine Inputc

This routine reads in the combat weapon system values from

CBDATA for each combat level node. This file has a documentation

preamble which is followed by the generic red unit data set.

Each data line contains a red unit type, eleven values for the

'. weapons systems and the posture for this type unit. This data

set is completed when unit type is equal to "99999". A red table

of equipment data structure is created for each line of data and

I> snapped into the generic red unit queue with root in variable

NREDTE in COMMON/C3/.

IThe last data set read by Inputc is the combat weapon sys-

tems data. The first line read is a comment line to assist the :1

analysts to identify the scenario data it represents. Each data

line contains a mode identifier, unit posture, and the number of

weapons in each combat system type. It then finds the NODE data

structure that is specified, creates a CMBT data structure for

*" that node, and stores the number of systems in that structure.

* - When the NODE identifier is found to be "99999," the input is

completed.

.-* B.2.b(4). Subroutine RdRule

RdRule reads in the command post (node) rules which consist

,.. of three data sets. The data is read from file C3RULE. The file

has a data preamble followed by three lines of heading for the

rule parameter data set. This set is read by format (15, 110,

50

415, 2X, 3A4). The variables read are; Rule number, type unit

that uses the rule, time required to perform the processes, the

minimum messages required to initiate the process, an indicator

of a periodic or reaction-type process, and the start time for

periodic processes. If the minimum messages required is zero,

then the process is done for each current message. The last

field read on each line is the title of the decision rule. This

data set is completed when a rule number is zero.

The next data set read is the input message data. It has

two lines of heading and is read by format (15, 110, 315, 2X,

3A4). The variables read are: Rule number, unit type that

originated the message, message type, maximum age for the message

* to be useful and a flag to force a message to be used only once.

This is to keep an input message that is retained for more than

one period from generating the same output message more than

once. The last field is the title of the message. The data set

is completed when a rule number is zero.

The final data set is the output messages to be created by a

rule. It has two lines of heading and is read by format (I5,

110, 215, 3(15, 16), 212, 215, 12, 2X, 3A4). The variables read

are; rule number, destination unit type, output message number,

* priority, three sets of link type and capacity required, flag if

destination is commander only, output flag, two alternate des-

" tination unit types, the maximum time the message will remain

active in the communications network, and the title of the output

message. NOTE: This data is read into 8 arrays in COMMON/RULE/.

These arrays currently have a maximum of 300 entries. The output

flag for random process types is also used as the minimum time

between report generations.

51

* *. ** %. %..

B.2.b(5). Subroutine RuleIn

The subroutine creates the data structures OMP, IMT, and MSG

for each node. The parameters for the process, input messages

and output messages are read from file C3RULE bySubroutine

RdRule. RULEIN processes each rule in array IRULE until IRULE

(1,N) is equal to zero. For each rule number, a queue of generic

messages is created from the MSGOUT data from C3RULE. This queue

has its root by rule number in the MSGQ array. After this queue

has been created, an output message process structure is created

for each node of the type indicated as an originator of the pro-

cess. This OMP structure will have a pointer to the queue of

generic messages that will be created each time the process is

- successfully initiated during the game. This success is based on

receiving the desired information at a node. This information is

* indicated in an input message table (IMT). The IMT is created by

RULEIN from parameters from C3RULE and is attached to the OMP

data structure. At the completion of initializing all rule pro-

cessing, RULEIN calls SUBROUTINE RULLOUT to echo the data struc-

tures to output.

B.2.b(6). Subroutine StatIn

StatIn is a part of the input module because it initializes

the data values in a commander's status data structure. This

data is the perceptions by the commander of his subordinate

* unit's strengths and combat postures. The initial perceptions
are based on the input numbers of weapon systems for the sub-

ordinates. The perceptions of the subordinates for (red) are set

to the first generic red unit that was read in and the foe unit

title is set to "uninitialize".

StatIn is called by the events subroutine prior to entering

the combat time loop. It initializes only the nodes that have

status blocks created by Input.

52

5 2

.* *. -. '-. ~ ~ -

B.2.b(7). Time T Input Sub-Module

C3EVAL has the ability to accept scenario based messages

created by the user and to modify combat units' force structures,

command posts' input and output processing limits, communications

paths capacities and preplanned changes in the command structure.

These changes are indicated in input data by specifying the de-

sired game time for them to take effect. Subroutines ExtMsg and

TInPut are called by subroutine Events during each game cycle.

The other subroutines in this section; ExtSpt, ChForc, ChLim,

ChLink and ChNode are used to support these routines.

* B.2.b(7)(a). Subroutine ExtMsg

This subroutine reads in all external messages from C3DATA.

These messages must be in time-sorted order. The time that a

* .. message is to be used is read into MIN(l). If this is some

* future time, processing is returned to EVENTS. When messages are

* . to be processed, a MSG block is obtained from DM and filled with

b the input elements. If an ATO is indicated in the message, a

DATA block is obtained, the ATO data read and transferred to the

block. The ATO is attached to the message via the pointer PDATA.

Next the node that is to receive the message is found and the

message is put on the node's input message queue. The format for

messages is (916). The variables read are; message times; mes-

sage type; unit type of originator of the message, destination

unit, unused field, output flag, additional data flag, priority,

and time message was created. The format for additional data is

. determined by the message type. If the message type equals 3136,

the data is read by subroutine ExtSpt.. Otherwise, it is read by

format (6X, 616) and the variables are: support unit, earliest

support time, latest support time, type of aircraft, and number

of aircraft.

V 53

+" + . "

B.1.b(7)(b). Subroutine ExtSpt

ExtSpt reads additional data for messsage type 3136 from

C3DATA. The format used is (6X, 416, 5X, 3A4, Ii). The var-

IN iables read are: unit, time, type of foe, posture of foe, foe's

title, and flag to indicate additional data on the next line.

ExtSpt creates an Intel Report Data Block for each data line and

snaps the queue into the additional data pointer in the message.

B.2.b(7)(c). Subroutine TInput

Subroutine TINPUT inputs changes to characteristics during a

specified time T. The characteristics that can be changed are:

number of weapons and posture of a unit, input and output message

limits at a particular node, a node's commander or subordinate,

and the message capacity of a particular link type between two

specified nodes. The reinforcement changes are read from a for-

matted file. The node, limit, and link changes are read from

L three unformatted files. Future changes are input and held until

the specified future clock time. There may be more than one

change per characteristic at any given clock time. The input

stream must be in time ordered sequence. When an update time

occurs, the appropriate subroutine is called to process the

change.

B.2.b(7)(d). Subroutine CHFORC

Subroutine CHFORC changes the combat values for a specified

unit number for a blue combat unit and its corresponding red com-

bat unit. If the unit number of the blue combat unit does not

exist (not found in NODE queue) then an error message is pro-

duced. Otherwise, the posture of the red and the blue combat

units are updated. The number of red and blue weapons are up-

dated for reinforcements. Note: A blank line must be given for

a side that has no change.

54
,4.

B.2.b(7)(e). Subroutine CHLIM

Subroutine CHLIM changes the input or output message limit

at a specific node. The message limits are: maximum number of

input messages that can be received at a particular node during

one time increment, maximum number of input messages that can be

received or held at a particular node, maximum number of output

messages that can be sent from a particular node during one time

increment, maximum number of output messages that can be sent or

held at a particular node. Note: Both must be given even if one

does not change.

B.2.b(7)(f). Subroutine CELINK

Subroutine CHLINK changes the maximum capacity of that par-

ticular link type between two specified nodes. The values passed

to CHLINK are: clock time change is to be made, unit identifier

of node at one end of link, unit identifier of node at other end

of link, link type, and new maximum path capacity.

B.2.b(7)(g). Subroutine CHNODE

Not implemented yet.

B.2.b(8). Block Data FRatio

* . :This routine contains the data used by the force ratio cal-

* culation sub-module. This data includes the names of the weapons

system types and the engagement rates. There may be three sets

*: of engagement rates for Red and Blue. Variable Il in COMMON/BLUE

.. identifies the index weapon systems and the number of weapon

systems is set. Then the allocation matrix for a generic unit is

set for Red and Blue. Finally, the Red and Blue probability of

* *. kill matrices is set.

55

2"+ *,*'* •. - ." • ' "• ' " " " • • + ' ' '

*~- Y- 7-- rPs1I1

S B. 2.c. Events Module

The EVENTS Module contains all of the C3 combat, air opera-

tions, and Time T Input/Output. This section will discuss the

functional subroutines in this module. The utility subroutines

that are used in this module will be described in section C. The

structure of the event processes is shown in Figure 11.

B.2.c(1). Subroutine EVENTS

The Events Subroutine is an executive routine that controls

the game clock and sequence of events. For each time period, ex-

* ternal events are obtained by TInPut and external messages are

" obtained by a call to ExtMsg (see Section B). Messages are re-

ceived at command posts, processed, and new messages generated by

the call to NODE. Close air support sorties are allocated,

scheduled, controlled while airborne, landed and rescheduled for

. - COMBAT. Game time is incremented until the end of game time is

reached when processing is returned to C3EVAL. Subroutine Events

checks the user's indicator for time T output data. If this is

requested, Subroutine Output is called at each time interval.

B.2.c(2). C3 Sub-Module

This sub-module represents the command post actions (as

specified by the decision rules) and the communications between

-. command posts. Communications are represented by data specified

* paths between nodes and the capacity of each path to carry mes-

sage traffic based on priorities. Messages can be generated by

. user (external) input, by random occurrance based on decision

rule parameters or in response to internal events such as receipt
of a message or the change in a force ratio beyond input limits.

Messsages may be sent, delayed or deleted from the network. Each

path capacity may be modified at any time interval to represent

56

.

CL)

C. Fl 1-ijL

0 0 Cl)

C.)

CIL Cl I

0 ~ 1-

coU
"2o

C.)C -DC) 0

57 -Iz

direct attacks, E W, etc. Each node has input and output limits

on the number of messages that can be processed during each time

M cycle. Designated nodes will maintain perceptions of their

subordinate's capabilities and the opposing forces via messages

received. Allocation of support weapons are based on rules

applied to these perceptions. The communications network will

attempt alternative communications types and routings to send

mesages that may be delayed. The details of message creation,

-. movement, arrival and destruction are made available in contin-
uous and summary form. All C3 processes are accomplished by

* . Subroutine Node and the routines that support it.

B.2.c(2)(a). Subroutine NODE

This subroutine has three main sections to model a commmand

post's C3 events. The first section processes the input messages

that are on its input message queue. In this section, each mes-

sage is counted and checked to see if it is addressed to the node

or has been sent to the node to be routed to its final destina-

tion. Rerouted messages are simply moved to the output hold

queue for communication handling. If the destination for the

. " message is not on the node's destination queue, the misrouted

E message is deleted and an indication of this action is put in

-" " standard output. All input messages at each node are reviewed by

subroutine MInLim where input limits are applied. MInLim is also

*
" ° called after processing to put the messages held due to limit on

the node's input queue for the next time cycle. Subroutine MsgIn

is called to process the messages that meet the limits.

When all incoming messages have been processed, the decision

-. rules section is entered. This section models all processes that

have been specified by input for this node type. A process may

be periodic or based on reactions to input messages. If it is
periodic and the time for the process is the current time, SUB-

ROUTINE PROCESS is called to generate the output messages. If a

58

w** **...]

' process is reactive, then the input messages by type, originator

type, and number are checked to see if sufficient current infor-

mation is available to complete the process. If the processs is

able to be completed, then SUBROUTINE PROCESS is called to gener-

ate output messages where rules have been met. After all pro-

cesses have been completed at a node, Subroutine MouLim is called

to limit the number of messages that will be output to the net-

work.

After all processes have been completed for all nodes, the
communications section is entered. This process is modeled by a
series of subroutine calls that review various aspects of alloca-

ting messages to available communications links capacities. The

sequence of subroutine calls for message allocation is shown in

Figure 12. In that figure, SUBROUTINE LIMIT is shown after each

allocation routine because it calculates the effects of the two-

S:- way communications limit, while the other routines use the sim-

* pler one-way limit. The first acceptable communications link

found is used by each routine. Therefore, to model this complex

process, each destination and link must be checked separately.

* In addition, messages may be bumped by higher priority messages

but may have sufficient priority to bump other messages on dif-

* ferent destination/link combinations. Therefore, each process is

tried twice. At the end of this sequence, all messages that are

successfully communicated are moved to the receiving node by Sub-

- routine Send and process control is returned to SUBROUTINE

Events.

B.2.c(2)(b). Subroutine AloCAS

This routine allocates sorties to requests for CAS. It is

called by AtoAlo which establishes the number of sorties which

can be allocated in accordance with the existing plan and priori-

tizes the requested received. AloCas approves or disapproves the

*. requests based on the number of sorties specified by AtoAlo.

59

C.

d" ".

.-.F , , ' & , - z x - -" . "" "- :- ,"- /7 ' ", ..2 -" " " ." ." .'' ', ,,-"2 ,-,-" " "- .. " ' - - -" • - • • " . °.

,6

*PRIMARY DESTINATION

ALOCAT,LIMIT by primary link.
*FIRST PASS FOR ALTERNATE LINKS

HOLDQ1,LIMIT 1st alternate link

HOLDQ2,LIMIT 2nd alternate link

*SECOND PASS FOR ALTERNATE LINKS
HOLDQl,LIMIT 1st alternate link

HOLDQ2,LIMIT 2nd alternate link

*ALTERNATE DESTINATIONS
ALTOUT,LIMIT ist pass, all links
ALTOUT,LIMIT 2d pass, all links

*FIRST ALTERNATE DESTINATION

HOLDOl,LIMIT Ist alternate link

HOLDQ2,LIMIT 2nd alternate link

*SECOND ALTERNATE DESTINATION
HOLDQ1,LIMIT 1st alternate link

HOLDQ2,LIMIT 2nd alternate link

*RECHECK ALL POSSIBILITIES
ALTOUT,LIMIT

*SEND MESSAGES
SEND

Figure 12: MESSAGE ALLOCATION SEQUENCE

Approved requests are forwarded as messages to the wing opera-

tions center. Disapproval messages are sent to the requestor.

The count of sorties approved under the plan is updated.

B.2.c(2). Subroutine Alocat.

This subroutine is used by SUBROUTINE NODE to initate the

allocation of message traffic to the elements of the communica-

tions network. Each message on the future message queue that is

to be sent during the current time slice is moved to the

60

16

. S

'V2

ZIP appropriate destination link's hold queue in priority order. '

When this is complete, the hold queue is moved to the send queue

and the send queue is checked to see if there is more message

capacity required than the link can carry during the time slice.

Any messages that are over the link's capacity are moved back to

the hold queue. (Note: This is a one-way check. This means

that this part of the allocation algorithm assumes that this node
could use all available communications capacity when in fact,

there is another node at the other end of the link with messages

to send as well. This condition is adjusted in SUBROUTINE LIMIT,

which is called by NODE immediately after ALOCAT is finished.)

B.2.€(2)(d). Subroutine AltOut

Allocation of message traffic in a busy network can be an

involved process. The algorithm used by C3EVAL is intended to

model the actions that would take place in a message center. It

follows capacity limits of the network's links and message con-

straints of priority, link types, and acceptable routings. The

number of parameters that are involved are indicated in Figure

13. The message may have 9 possibilities (3 destinations x 3

link types). The node may have several destinations each with

its own set of link types The primary destination and link is

tried by SUBROUTINE ALOCAT. The HOLDQ sub-routines allocate to a

specified destination using either alternate link 1 or 2.

SUBROUTINE ALTOUT allocates by any acceptable link (including the

primary link) to message and node alternate pairs. This is

accomplished by four successive calls to the utility SUBROUTINE

MOVMSG. ALTOUT sets the nodes two way allocation limit flag off

because this limit may be exceeded by its process. a-

B.2.c(2)(e). Subroutine AtoAlo-

AtoAlo is called by Proces for each node that is processing

requests for CAS (message types 2900, 3000, 3400) and has a non-

61

- ~~.t -o-5.

Sd%

NODE MESSAGE

DEST DEST
PLINK LINKI ALT1

LINK2 ALT2
. LINKP
• LINKA1
• LINKA2

LINKn

ALTi
PLINK LINKI

LINK2

LINKn

ALT2
PLINK LINKI

LINK2
*

LINKn

Figure 13: PARAMETERS IN COMMUNICATIONS ALLOCATION

null pointer to its allocation parameters queue. AtoAlo pro-

cesses all pending requests with one call for each message type.

When the first request is received for a unit, AtoAlo creates an

entry in an allocation queue. Any additional requests that are

active for the same unit are consolidated into this entry. After

all appropriate requests have been consolidated, routine PRatio

* is called to calculate the processing nodes perceived force

ratios for all the subordinate units.

Then FQueue is called to create a separate set of pointers

in the subordinate's status structure sorted by perceived force

ratios. The allocation parameters are searched for the appro-

priate message type. If it is not found, routine ATOOUT is

called to process the air requests without allocation

62

(
•
.

• * :,'',,'4'-" : -- .."-: "-'" *'". -.i -'; "."i. -" ';* . :::.- -''.- " - - -:':'';' .-;; . .-:'-: ;

-: : c -. - -i ; : - - .ii W ;T i2: -4-7I ; .. -P ; .- .

restrictions. If the allocation parameters are found, the number

of sorties available for allocation as a function of the alloca-

.W cation time period are calculated by a straight line technique

and passed to routine ALOCAS for allocation to requests. The
A final step is to update the log of sorties allocated.

B.2.c(2)(f). Subroutine AtoDel

Routine Proces calls AtoDel at the completion of each pro-

cess to delete all ATO requests and reply blocks that belong to

the process.

B.2.c(2)(g). Subroutine AtoOut

This routine is called by Proces and AtoAlo to process re-

quests for CAS without allocation restrictions that are carried

by message types 2900, 3000 and 3400. AtoOut checks each entry

on the nodes ATO queue to find the ones that match the current

process numbers. Routine MsgOut is called for each acceptable

ATO and the number of sorties approved for the requesting unit is

increased in the node's status block.-

B.2.c(2)(h). Subroutine AtoRtn

AtoRtn is called by Proces to pass along in accordance with

the decision rules, notification of receipt of requests for CAS.

.- AtoRtn checks each entry on the node's ATO return queue to find

the ones that match the current process number. Routing for the

message is obtained from the ATO's return destination list. A

message structure is created and filled in accordance with the,,

generic output message format for the rule. Alternate node and

communications data are set for the unique parameters of the node

and the message is put on the nodes' send queue or on its future

message queue based on time to create the message.

63

- B.2.c(2)(i). Subroutine FQueue

Routine AToAlo calls FQueue to create a threaded list

through a node's status structure. The order of the list is

based on the force ratio in each status structure. FQueue first

sets all pointers in this list to the "unset" value of 5. Then

it traverses the node's status queue to find the maximum force

ratio in blocks with an unset value. When the maximum is found,

it is snapped into the force ratio queue which removes the "un-

set" value. This process is repeated until all status structures

are sorted.

-" B.2.c(2)(j). Subroutine HoldQl

The communications section of SUBROUTINE NODE uses the

HOLDQ1 and HOLDQ2 subroutines to move messages from a hold queue

to an alternate communications link if the message has a suffi-

ciently high priority. Each message has the capability of having

a primary and two alternate communications type links and a pri-

mary and two alternate destinations. The alternate links and

their capacities are specified in the "generic messages data

structures" in COMMON/RULE/. This specification is necessary

because the acceptable communications type is a function of

message type and the capacity required is a function of link type
and message type. Destination type is also a function of message

type. However, the explicit destination node identify is a func-

tion of the message originating node. Therefore, COMMON/RULE/

contains unit type for destinations and the specific node identi-

ties are filled in by SUBROUTINE MSGOUT when a message is auto-

matically created. User input messages are placed directly into

the node's input message queue by SUBROUTINE EXTMSG and alternate

links and node data is not used for this type of message.

64,

,-.-

1,01.

HOLDQ1 has the function of placing each message on the hold

0 queue onto a link that matches the type specified as the first

alternate type link. It has the capability of using either the

primary or one of the alternate destinations. This selection of

destinations is made in NODE and passed to HOLD01 by the calling

sequence parameter IPASS. IPASS equal to zero means the primary

destination should be used. When IPASS is equal to 1 or 2, then

the corresponding alternate destination is used. HOLDQl also

bumps all messages of lower priority that exceed the "one way:

link capacity as a result of moving a message to its alternate

communications link. Note that "bumped" messages are returned to

the hold queue for the message's primary destination and primary

link.

The sequence of operations of HOLDQ1 is as follow:

- Set allocation flag for this node to off. This flag

indicates that a two-way limit has been completed for

this node. NOLDQI will modify the results of any pre-

Vvious two-way limiting and therefore this action will
have to be repeated. See SUBROUTINE LIMIT for a de-

scription of this flag's implications.

- Identify the appropriate destination based on IPASS

,9 value.
- Find nodes link with type equal to alternate link one

of message (if it exists).
- If message priority is higher than a message on the

send queue and capacity exists for this message, then

move message to the appropriate (priority order) position

in the queue.

- Set alternate communications flag to 1.

- Move any lower priority messages on the send queue to

their hold queue if they exceed the "one way" capacity

check.

65

lb..

B.2.c(2)(k). Subroutine HOLDQ2

This subroutine operates the same as HOLDQ1, except that it

uses the message's second alternative communications link for the

desired communications type. See HOLDQl for description of oper-

ation.

. B.2.c(2)(1). Subroutine IntlUp

Routine Proces calls IntlUp when the message type is 3136,

intelligence update. IntlUp updates a commander's perception of

a subordinate's combat foe. IntlUp checks each entry on the

commander's spot intel queue to find the ones that match the

current process number. The perception is updated if the spot

report has data that is later than the current perceptive data.

If the spot report is most current, all previous perceptions of

foes are deleted and the current report of one or more foes are

entered in the commander's status structure. The titles of the

foe units are for specific units. The unit type will be used to

refer to generic unit data for foe unit strengths.

B.2.c(2)(m). Subroutine Limit

This subroutine is used after each of the allocation

subroutines: ALOCAT, HOLDQI, HOLDQ2, and ALTOUT. Its function

is to insure the two way limit of a communications link is not

exceeded in the allocation process. LIMIT does this by starting

with the root NODE and checking the link limit for each link for

each destination node. In order to be efficient when the root

node and each subsequent node has been processed completely, a

flag is set to 1 in each destination data structure. When the

key node (the node which will have all of its destinations

processed next) starts to process a destination, the allocation

flag indicates that the two way check has already been accom-

plished with the destination. For example, if the root node is

66 ,5

4'."
I',

€°

number 1 and the next nodes are 2 and 3 in the node queue, the

, process starts with 1 as the key node. LIMIT checks each link

between 1 and 2 and sets the allocation flag. Then it processes

1 and 3 and sets that flag. The next step is to make 2 the key

node. It is not necessary to process 2 to 1 because this was

done previously. Therefore, in this example the links between 2

and 3 would be checked and the process would be finished.

The capacity check is accomplished in message priority order
by comparing the next message at the key node to the next message

at the other end of the link. When the capacity is exceeded by a

message, all of the remaining messages on both nodes' send queues

are moved (in priority order) to the messages' "home" hold queue.

The "home" hold queue is the hold queue for the actual destina-

tion (not alternate) and on the primary link. The final step is

to set the allocation flags in both destinations data structure.

B.2.c(2)(n). Subroutine MakMsg

This subroutine creates messages relating to ATOs. This type

message differs from most message types in that it has an addi-

tional data structure (ATO) attached to the standard message

structure via the pointer PDATA. The message priority is set at

1 and the maximum time for each message to be on the network is 3

time increments.
5'

B.2.c(2)(o). Subroutine MDELAY

Subroutine MDELAY is used by subroutine MOULIM to determine

which messages will be sent, held or deleted. Alternate and

future messages are ignored. MDELAY receives from MOULIM the

value of the maximum priority level to be sent (JPl) and the

number of messages to be sent from that priority level (JCI).

s MDELAY also receives the value of the minimum priority level to

be delayed (JP2) and the number of messages not to be deleted

67

* .
- 55 -

from that priority level (JC2). All messages of priority level

less than the value of JPl are sent (a value of 1 being the

highest priority). At the JPI priority level JCI messages will

be sent and the rest will be held. All messages at levels

greater than JPI and less than JP2 will be held. At the JP2

priority level JC2 messages will be held and the rest will be

deleted. All messages above level JP2 will be deleted.

6P

B.2.c(2)(p). Subroutine MINLIM

Subroutine MINLIM limits the number of messages that can be

input in one time increment. If there are more input messsages

than can be processed in one time increment then excess input

messages are temporarily moved from the input message queue to

the hold queue. After the messages that are still in the input

message queue have been processed subroutine MINLIM is called

again and the input messages are moved back from the hold queue

to the input message queue so they can be processed next time.

If the maximum number of input messages that can be procesed cuts

off the input message queue in the middle of a priority level

then all messages of that priority level are received.

B.2.c(2)(q). Subroutine Moulim

Subroutine MOULIM limits the generation of output messages

at each node based on the number of messages created to be pro-

*. cessed at each node and message priority. If there are more

messages than can be output in one time increment then the

appropriate number of messages (starting with the lowest

priority) are either held (delayed one time increment) or
deleted.

B.2.c(2)(r). Subroutine MovMsg

This utility is used by SUBROUTINE ALTOUT to attempt to
allocate messages to alternative destinations. MOVMSG will

68

'.1'

attempt to move messages in a queue with its root at PMSGO (in a

link structure) and the first message located at PMSG in DM. It

0will try the first or second alternate destination in each mes-

sage based on the value of IALT. The unit identified in IUNIT is

checked to see if this is an acceptable alternate for a message.

If it is acceptable, then the links that are available to go to

this destination are checked to see if they are acceptable links

for the message. For a link that is acceptable, the message is

placed on that link if it has sufficient priority over existing

messages already on-the send queue and if it does not exceed the

.* available link capacity. The alternate communications flag is

"" set in the message to zero for primary link type and 1 or 2 for .1

alternate link types.

B.2.c(2)(s). Subroutine Msgln

Each node in the network has the capability to process

messages. The data structure that holds the information about

5j this process is the "output message process." The basic assump-

tion for modeling the processing of messages that have been re-

ceived is that received messages can be grouped together by mes-

sage type and message originator unit type. MSGIN compares the

* input message to the message type and originating unit type for

". each message processed at the node. When matches are found, the

process' "input message type" substructure, the "input message

- list" (IML), is searched for the specific unit identifier. If it

is not found, an IML structure is created for the new unit iden-

tifier. In either case (existent or previous non-existent IML)

the time the message was created is compared to the time of mes-

sage creation in the IML. If the incoming message is newer, the

message flag is set to 1 and message age is set to 0 in the IML.

In addition, the IML message creation time is updated.

69

- - *~ - --..

.~4*

Pk%•-- V7 lo

After all processes have been updated by the incoming mes-

sage, it is tested to see if it contains an ATO substructure. If

it does, the ATO is moved to the nodes ATO queue. Finally the

data block containing the message is released to DM for reuse and

control is returned to SUBROUTINE NODE.

B.2.c(2)(t). Subroutine MsgOut

SUBROUTINE PROCESS calls MSGOUT for each instance that a node
Z_

has met the requirements to satisfy a message process. The func- "

tions performed are a determination of the desired destinations,

alternate destinations, and message structure creation. The data

structure used is Output Message Process (OMP) and its queue of

output messages.

Each output message in the OMP is checked to see if it is

. addresssed to the commander of the node or if it is an air re-

quest. If the commander flag in the message is on (=1), the

message is sent to the commander only. If it is not commander

only or an air request, the message is sent to all units (nodes)

that can be communicated with directly (in the DEST queue) that

match the destination unit type found in the 5th word of the

output message.

Next a message data block is located in DM and filled in

with the data in the output message queue. The process for al-

ternate destinations matches the unit types specified in the out-

put message to the designated alternate units for the destina-

tion of the message. Finally, the message is placed on the -.

node's send queue, by priority, or on its future message queue,

by time to be sent.

MsgOut also has the ability to randomly vary the amount of

communications capacity required to send a message. If option

flag 19 equals 1 message, length will be modified for all mes-

sages of node type "300."

70

. ''- - ''.''. ..*.'- . *.* .*.*-.** .. ., o'. ",. • .." .." . . ."v .' .,. '.'",".' . - -"-., -, .- .

V L W, L -W W -. - - W

B.2.c(2)(u). Subroutine PRatio

Routine AtoAlo calls PRatio to calculate the commanders per-

ceived force ratio for his subordinate units. Each of the eleven

weapon system types for the foe is summarized over each of the

foe units in the foe queue. The numbers of each system type is

based on the generic unit strengths minus the number of foe wea-

pons reported as destroyed in the status structure. The number

of subordinate unit systems is taken from the status structure.

Each weapon system ratio is calculated. The current unit force

ratio for allocation of CAS sorties is the sum of red type one

plus 4 times type 11 divided by the sum of blue type one plus 4

times type 11. PRatio also sets the force ratio calculation time

to the current game time. ,

B.2.c(2)(v). Subroutine Process

Routine Node calls Proces to perform response actions based

on the conditions of process rules having been met. When node

determines that the conditions have been met for a rule number,

Proces bases its actions on the output message types for the

. rule. It currently processes message types 2900, 3000, 3400,

7000, 9990, 9993, 3126, 3136 and 3800. Proces checks the first

message type and branches to the related CASE statements. After

each set of CASE statements control branches to increment the

. output message type queue. When all output meqssage types for

*'" the process have been completed, routine AtoDel is called to de- •1

lete all additional data structures that were obtained from input

"" messages under this process number.

. B.2.c(2)(w). Subroutine RanMsg

Routine Proces calls RanMsg in response to output message

. type 3800, 4800, 5800, 5900, 6800, 7800 and 7900. RanMsg checks

itime to determine if it is the start of the game. If it is,

(71

;- .-. .J. -. - -. * . . . -'..* .'. .. .'. . . ." . *'. .V * . .2

the node's random message queue is initialized with the processes

random message using the start time in the generic message at

MSG(15) plus 2 times that number times a uniform random number.

Each message on the random message queue is checked to see if its

send time has occurred. If it has, the message is scheduled

again using the same calculation as above and MsgOut is called to

create the actual message to be sent.

[. B.2.c(2)(x). Subroutine Send

SEND is the final subroutine in message processsing. It

takes the contents of each link's send queue for each node and

- moves the entire queue as a complete string to the destination

nodes input queue. The resulting sequence on a node's input

queue is by sending node and by priority of the messages within

each sender's segment. Each message sent by the node is counted

and the running summation is stored in the NODE block. Then SUB-

ROUTINE SEND checks each message on each hold queue to see if the

message is overdue. If it is overdue, then that message is de-

leted from the network and a notification is printed on output.

B.2.c(2)(y). Subroutine StatUp

Routine Proces calls StatUp in response to message types

3126 and 3130. These messages are created by routine RptLos at

each combat cycle and sent through the network to the commander's

node (or input from external messages). StatUp gets each data

element from the node's spot report queue, and checks the process

number in the report. Each applicable report with blue data flag

set to 1 is used to update the subordinate's losses and strength

-* estimates and blue's combat posture. If the blue data flag is

off (equals o), StatUp updates the estimate of red forces des-

* troyed.

72 P

B.2.c(3). Air Operations Sub-module

The air operations module receives requests for CAS from

nodes representing ground unit command posts (usually at the

Corps level) in accordance with user established decisions rules.

The reception of CAS requests and the resulting allocation,

assignment, and scheduling of aircraft to support the requests

are modeled at the wing operations level (WOC). The structure of

air force combat resources starts with a CRC that controls air-

- borne CAS for a designated set of ground combat nodes. The air-

"" craft that the CRC controls come from one or more notional air-

* bases that have a direct relationship to the CRC. Each airbase

(WOC) may have one or more types of aircraft that are scheduled

for sorties. A queue exists for each aircraft type at each WOC.

This queue contains the number of aircraft that will be available

for assignment at a specified time. The aircraft combat cycle

starts in the availability queue, includes assignment, takeoff,

reporting into the CRC, enroute to target, combat attrition (in

the suported ground units combat matrix), aircraft survivabil-

ity, return to airbase, turn-around for another mission, and back

into the availability queue.

°equests for CAS are originated by the combat level units

.I when their force ratios reach a user designated level. They may

also be originated via EXTMSG input to a node. The requests for

CAS are processed through the C3 network and command posts in the

• " same way all messages are handled with the exception that a com-

mander may approve requests in accordance with an allocation

plan. The WOC is a designated node type that has WOC processing

capabilities and resources. Requests for CAS arrive at the NODE

message structure for a WOC in the same way that all messages

arrive at a node (in the NODE's INPUT queue). Notification of

action on a CAS request is returned in the same manner. This

module consists of four subroutines: AIROPS, MAKMSG, STATUS, and

PRTATO.

.73

B.2.c(3). Subroutine AIROPS

Aircraft resources on the ground at the notional airbase are

maintained in aircraft type queues as shown in Figure 14. The

first action by this subroutine is to determine the number of

aircraft at the current game time. In Figure 14, if time is 3,

S the program would add 3.93 to the previously available 4.0

aircraft and then delete the RDYQ blocks with time 3. This is

done for all aircraft types (READY BLOCKS). The aircraft

availability status is printed out if requested by user input.

Mission takeoffs are scheduled by starting with the requested

Air Tasking Order (ATO) queue in the WOC's NODE structure. The

projected time on target is calculated using alert time and en-

route time and compared to the first request's earliest

PREADY - 1 READY BLOCKS I.-

~~PRDYQ..

RDYQ BLOCKS

PDQPRDYQ - END
12 7

403.93 1.97
.-.

Figure 14: AIRCRAFT AVAILABILITY STRUCTURE

74

.,; ..4

V. I > .._ . V ._ 6 1 ..

acceptable time on target (TOT). If the aircraft would arrive

too soon, processing of air requests is finished for this WOC

during this time frame. (Requests on this queue are sorted in

earliest TOT order.) If the earliest time is acceptable, then

the latest time is checked. If the mission would be too late,

the request is deleted and a message is sent to the requesting

* node. If the mission can meet the requested window, processing

is continued by checking the availability of the aircraft type

requested and the number to be sent. All missions will have a

whole number of aircraft assigned that is not less than the

minimum aircraft limit specified by input. If the number re-

quested is available, then the request is completely filled. If

the number available is less than requested, the mission is

scheduled with the reduced number.

If a request is fulfilled, messages to the CRC and request-

ing nodes are created by calling SUBROUTINE MAKMSG and placed on

the WOC NODE's future message queue. An ATO is placed on the

CRC's ATO queue. This queue i3 used to model the mission report-

ing into the CRC after takeoff. After processing all current re-

quests for the WOC, the remaining aircraft availability status is

printed out. SUBROUTINE AIROPS also processes CRC actions. The

first step is to zero out all of the CAS entries in the combat

matrix for each combat level unit. (Note that this means that

time on target is always one time cycle.) Then the ATO queue is

examined for each mission that is on target during this time

interval. The combat unit's combat matrix is found and CAS is

incremented by the number of aircraft in the mission. Also los-

ses of CAS aircraft due to enemy action are computed. A running

summation of CAS sorties is also kept. The last step is to

calculate the number of aircraft that survive the mission. An

enroute survivability is factored in and the total returning air-

craft is computed. Note that this may produce fractions of an

75

-* - . -. .*. . .~ -

aircraft. This number is then scheduled for landing and ground

turn-around by entering it in the WOC's RDYQ queue.

B.2.c(3)(b). Subroutine MakMsg

This routine is called by Subroutine AirOps to create mes-

sages type 7000 that notify a combat unit of the time on target

and number of aircraft that have been dispatched for CAS. This

routine is documented in Section 3.2.c.2(n).

* B.2.c(3)(c). Subroutine Status J-

This routine is called by Subroutine AirOps to print the

status of a WOC on file C3DATA.

B.2.c(4). Combat Sub-module
This module uses the IDA method of attrition calculation

documented in IDA Paper P-1615, Net Assessment Methodologies and

Critical Data Elements for Strategic and Theater Force Compari-

sons for Total Force Capability Assessment (TFCA), Volume II:

Illustrative Example of Static Measures and Methodology. The

executive routine for the attrition calculation is Subroutine

Map. It is called by Subroutine Combat which interfaces betwen

the C3EVAL processing and data structures and the Map algorithms.

This sub-module generates requests for CAS, determines aircraft

losses during the attack portion of their mission, saves weapon

system losses on file LOSST, and creates spot loss reports.

-* B.2.c(4)(a). Subroutine CasLos

Routine AirOps calculates the time on target and the time to

return to the ready queue at the WOC for each CAS mission. It

also calculates the enroute losses and schedules the remaining

aircraft for return to duty by putting the returning aircraft on

the WOC's ready queue. Attrition of CAS due to hostile systems

76

in the ground support area is calculated by routine Combat.

Combat calls CasLos to add the additional loses to the mission

aircraft. CasLos searches the WOC's ready queue for the first

mission with return to ready time that is the same as the air-

craft returning from combat and subtracts the combat losses from

the number of aircraft to be available.

B.2.c(4)(b). Subroutine Combat

This routine is the executive for determining combat attri-

tion. Combat interactions are evaluated each time increment for

each unit that is a combat type unit that is not in combat status

-* equal 0 (i.e., in reserve). Combat system and posture data is

extracted from a node's combat structure for both Blue and the

opposing Red force. The allocation matrices and force ratios are

calculated by Subroutine Map. The combat drawdown is calculated

by the matrix multiplication of the number of systems times the

opposing sides Omatrix created by Map. The results of the draw-

down are stored in the node's combat structure and losses are

output to file LOSST if the user has requested this data. File

LOSST is used by the post processor to generate weapon system

loss graphics. Subroutine Combat compares the current force

ratio to the input threshhold level and creates a request message

for CAS if the ratio is too high and earlier requests are not

pending. If the user requested it, the results of each combat

engagement is printed on file C3DATA. If the user has indicated .

random processes are desired, Combat will randomly modify the

* times that requests for CAS are sent. Subroutine Combat calls

RptLos to generate spot loss reports to his commander.

B.2.c(4)(c). Subroutine MakMsg

CAS-Subroutine Combat calls MakMsg to create messages to request

CAS support. This routine is documented in Section B.2.c(2)(n).

77

-W_-: WT!W 7m U.,r'LV W W~

'a-

B.2.c(4)(d). Subroutine Map

This routine is the executive for calculation of force

ratios, weapon system allocations and the Q combat matrix. This

routine and its subordinates are documented as noted in (4)

above.

~ B.2.c(4)(e). Subroutine RptLos

This routine is called by Combat for each unit after combat

attrition is calculated. It creates two combat spot loss re-

ports, message number 3130 for Blue and 3126 for Red losses.

These reports are sent to the unit's commander and forms the

basis for the commander's perceptions of the unit's status. The

actual losses are reported unless the random process flag is on.

Under random operations, the messages are randomly delayed and

the contents of the messages are randomly modified.

B.2.d. Output Module

Output by C3EVAL is provided in four different areas; input

echo, game events, summary and time T. Input data is echoed to

file C3ECHO to assist in creating a complete record of the scen-

ario and to verify that the data structures created during ini-

P tialization are properly filled. Subroutine Input echos the data

preamble, control flags, node data set, link data set, and limits

• data set. Subroutine Inputs echos combat unit strengths. Sub-

routine Inputa echos CAS allocation parameters, CRC parameters

and available aircraft. Subroutine RulPrt prints out the deci-

• - sion rules in node type (echelon) order.

Game events are printed to file C3TIME. Subroutine StatOn

prints out the commander's initial perceptions of his subordi-

nates. TimeT input of reinforcements, combat status and link

capacity changes are printed out by routines under TinPut.

ExtMsg echos the user's input messages as they occur. The

78

g

" P:-

printout of message flows, queue status, combat losses and

scheduling of CAS is controlled by user flags set by routine

Contrl. If the debug flag is set, a large volume of physical

as well as logical data is printed on file C3DATA.

At the end of the game, a summary of communications, network

and support sorties are printed to file C3SUM. This is followed

by the size of dynamic memory actually used and the commander's

perceptions at game end.

The fourth area of output is created for use by the graphic

post processor. The message flow data at each time interval may

be printed to file TIMET and the combat losses data printed to

file LOSST..

B.2.d(l). Subroutine OutPut

Subroutine Events calls OutPut if the user has requested

time-T data to be saved, PFLAG(14), for the post processor.

Events set the output file, IOUT to TIMET calls Output, and then

resets IOUT to C3DATA afterward. The main program C3EVAL calls

OutPut at the end of the game with IOUT set to C
3SUM. OutPut

creates the printout shown in Figure 15.

B.2.d(2). Subroutine PkSGl

This routine prints out data about messages at alternate

destinations and on a node's input and future message queues. It

may print all messages, all messages at a specified node, and/or

during a specified time frame. It may be restricted to only

those messages that have their track flag set.

B.2.d(3). Subroutine PMSG2

This routine processes the same as PMSGI except that it is

done for a node's output and hold queues.

79

4j"

SMUARY OUTPUT AT TIME 48
COMWUNICATIONS LIMIT INPUT LIMIT OUTPUT LIMIT SORTIES

UNIT NUMBER TYPE IN OUT HOLD KILL IN HOLD KILL OUT HOLD KILL CAS HELO.
SHtAPE 18 766 43 13 S 6 43 6 6 13 6 6 6 e
AFCENT/AAFC 17 660 185 134 6 1 185 6 6 135 0 0 6 0
Vil OR 1 400 7 2 6 6 7 6 6 2 6 6 6 6
VII CORP TA 15 450 28 5 6 6 28 6 6 5 6 6 6 e
CENTAG 14 56 94 54 6 6 94 6 6 54 6 6 6 6
V CORP REAR 13 490 43 24 6 6 43 6 6 24 6 6 6 0
V coRPSTAC 12 450 437 69 0 3 437 6 6 72 6 6 6 0
S2 MECH 9 366 78 273 24 5 58 6 6 274 6 6 6 6
-oc 8 766 13 165 6 613 6 6165 6 6 6 6
ATOC 7 56 168224 6 616 6 6 224 6 6 6 6
4ATAF 6 666 249 173 6 6 249 e 6 173 6 6 6 0
23ARMDIV 4 360 93 174 2 1 62 2 11 177 54 47 54 6
VCORPS 3 40e 173 162 6 6126 6 6 49 6 6 6 6
29 MECH 2 36e 57 169 6 6 57 6 6169 6 6 6 6
201 ACR 1 2502314 6 618 6 6 9 6 6 6 6

,.

p.-

K

I.,

p..

p...

Figure 15: SUMMARY OUTPUT AT TIME

Ii.' 80

.1"
., F'..,. .. " € € , ",," . ",. " ' " "'' '' .'-. " . .' . .." -,- " . . ." .. ' .', v , , . .¢ _j . ,

B.2.d(41. Subroutine RulOut

Routine Events calls RulOut if PFLAG(7) is set. The main

program C3EVAL calls RulOut if PFLAG(17) is set. RulOut prints

out the decision rule parameters and variables in physical struc-

ture form so that the details of their operation can be followed.

If the debug flag is on RulOut will call PMsgl and PMsg2.

B.2.d(5). Subroutine RulPrt

The main program C3EVAL calls RulPrt to echo the decision

rules to file C3ECHO. RulPrt loops through each decision rule

for each level unit specified in its internal data statement. If

new unit types are added to the scenario, the unit type must be

added to this data statement to have its rules echoed to the

hfile. The decision rules are printed in unit type order with the

rule process parameters followed by the required message-in data

and then the output messages to be generated by the rule.

i 3.2.d(6). Subroutine StatOu

Routine Events calls StatOu at the start of event processing

to print the commander's initial perceptions of his subordinates.

The main program C3EVAL calls StatOu at the end of the game to

.P print the commander's perceptions at the end. StatOu checks all

nodes to determine if their status queue exists. If it does, the

* integer value of blue and red curent perceived forces and losses

are printed. Blue data and red losses come directly from the

status structure. Red perceived weapon system numbers are ob-

. tained by adding the values for each foe perceived from the gen-

eric tables and subtracting the losses reported in the status

structure. The perceived combat posture is also printed.

81

joc
- *#%* ~ *~

3.2.d(7). Graphics Data

Summary data is printed by subroutine Output. If the user

has indicated graphics post processor data is desired, routine

Events calls Output at each time interval. This data is written

in character format to file TIMET. The post processsor reads

this data to create some of its graphic output options. In

addition, if the graphics data flag is on, routine Combat writes

the comat losses and force ratio for each node in combat. This

data is written in binary form to file LOSST. The post processor

also reads this file.

B.2.d(8). Subroutine VMData

This routine prints out the maximum dynamic memory location

ip used and the status of the reusable block queues.

B.2.e. Utilities

- These routines perform data structure building, searches,

h dynamic memory operations, and other program support-type

functions.

B.2.3(1). Subroutine Find

SUBROUTINE FIND searches the elements of a queue for an in-

put calling sequence integer value (ID). The starting point in

the queue is PIN. FIND assumes that the pointer to the next ele-

ment in the queue is the first value in an element and that the

.- last element in the queue will have this value set to zero. The

offset from the first value of an element that contains the de-

• sired value is indicated by the parameter N. If the value is not

found, the output parament POUT will be set to zero.

82

*

7iq

B.2.e(2). Subroutine Gimme

GIMME provides a DM data block of length LEN from the memory

space ISPACE. In the current version of C3EVAL, there is only

one dynamic memory area (MEMORY). The location of the first word

in the data block is set into NPTR. GIMME first searches its

garbage list to see if a block of equal length is available for

reuse. If not, it creates a new block of the desired length by

increasing next unused space pointer ISPTR by the value of LEN.

* GIMME also checks to insure that the current maximum size for DM

* is not exceeded.

B.2.e(3). Subroutine POut

This routine is used for debug purposes only. It produces a

Wsnapshot of part of dynamic memory. The snapshot starts on loca-

tion one and prints the specified number of variables (up to

*? eleven) per line and the specified number of lines. Note that
C3EVAL does not use locations 1-100 and this area should be all

* zeros.

B.2.e(4). Subroutine Releas

This routine works in conjunction with Gimme to control

* dynamic memory. It places data blocks on the reusable memory

queue. The block address is placed on a queue of blocks that

have the same length as the input parameter to Releas. The queue

has its root in variable IGBPTR. Note that there is no garbage

collection accomplished.

B.2.e(5). Subroutine Restor-[..

Restore is used to restart a game at time T other than zero.

It assumes that a previous run has been made and that the status

of dynamic memory and COMMON parameters were saved by routine

Save. This capability has not been enhanced to operate with the

83

current version of C3EVAL and will not operate correctly until it

has the ability to handle the time T input files created in the

, current version.

6' % B.2.e(6). Subroutine Save

This subroutine saves the status of DM and model parameters.

This data may be used to restart the game at the point where

SUBROUTINE SAVE was called. Due to enhancements made to provide

* ~. addditional time T inputs, this subroutine requires enhancement

before it can be used with the current version.

B.2.e(7). Subroutine SNAP

SUBROUTINE SNAP finds the correct position in a queue with

root in parameter PTR to insert a new member located at PIN. The

sequence variable is located at NWORD in the data structures.

B.2.f. Data Structures

There are two distinctly different approaches to data struc-

tures used in C3EVAL. The use of FORTRAN common variables and :2

" arrays is described first. The next section defines the approach

used to provide essentially dimensionless code and the linked

* list data blocks that are used to implement the required data

structures.

B.2.f(l). Common Data Structurel

The following nine named common data structures are used in
C3EVAL. This implementation is standard FORTRAN, with the excep-

tion of variables that start with "P" which are declared implicit

integer variables. They are normally used to represent pointer

(locators) of linked list data blocks in C3EVAL's dynamic memory.

84

• . * N.. ** * .

* '- (a.) COMMON/C3/NODElPGOMTNCRCINPIOUTNREDTEIRAND -

NODE1 Location of first node data structure in DM

PGOMT Not currently used

NCRC Location of first CRC data structure in
Dynamic Memory

" INP Input file number of for C3 data, set to 1
in PROGRAM C3EVAL

IOUT Output file number of all output, set to 6,7
and 8 in PROGRAM C3EVAL and 14 in Events

NREDTE Location of first generic red unit table of
equipment

IRAND Seed for random number generator set to
731593 in Block Data FRatio

The node data block is the basic building block for all C
3

* and combat data. The descriptions of the node, CRC and red gen-

eric data blocks are in Section (2).

(b.) COMMON/SPACE/NOUSE,MEMORY (20000).

NOUSE A check variable used for debug purposes
only. (It is MEMORY location zero).

MEMORY DM array. It is equivalenced to STORE to
facilitate its use for floating point as

S- well as integer values.

(c.) COMMON/LOCATE/ISPTRIGBPTR,MAXSP.

ISPTR Location

IGBPTR Root of the linked list of reusable data
blocks in DM

MAXSP Maximum value for ISPTR

(d.) COMMON/TIME/ITIMEINCTIMLASTTPD1,PD2

ITIME Current game time, number of INCTIM
intervals that have been simulated.

INCTIM Basic time interval of model, set to 1 in
C 3EVAL meaning one 30-minute period.

* LASTT Last time for this simulation run (for 24
hours of combat LASTT=48).

*1 **85

PD1 Start time for debug print (if PDEBUG=O)

PD2 Stop time for debug print

(e.) COMMON/RED/and COMMON/BLUE/.

COMMON/RED/ NR(1),ALTCRB(1,1),ER(II),VALR(II),
1 PKRB(II,II),NTCR(II),QR(1,II),ALLRB(II,II),
2 NTRJ,WGTR(II),WR(1)

COMMON/BLUE/NB(II),ALTCBR(II,II),EB(II),VALB(II),
1 PKBR(II,II),NTCB(lI),QB(II,II),ALLBR(II,II)
2 NTBI,WGTB(II),WB(II),Il

With the exception of Ii in COMMON/BLUE/ these two commons

are identical in definition for Red and Blue forces. The Blue

definitions will be given here.

NB Number of weapons by type

ALTCBR Typical allocation of Blue weapons against
Red

EB Engagement rate for each Blue weapon system
tions

VALB Interface variable for other APP calcula-
tions

PKBR Probability that a Blue system kills a Red
system

NTCB Typical number of Blue weapons assigned

QB Kill rate matrix of Blue against Red

ALLBR Allocation matrix of Blue against Red

NTBI Number of types of weapons, set to 11

- Il Index weapon system

WGTB,WB Interface variables for other APP calcula-
tions

. . (f.) COMMON/EIGEN/EIGR(II),EIGB(II),V(II),BETA,RAT4

EIGR Force ratio eigen vector for Red

* . EIGB Force ratio eigen vector for Blue

V Initial guess vector for eigen solution

. .. BETA i/lamda of eigen matrix

RAT4 Force ratio Red to Blue

..

6

' . o - • •- '

AD-AI68 973 C3 EYAL NODEL DEVELOPMENT AND TEST VOLUME 2 PROORAIUERS 2/3
NANUARL.. (U) INSTITUTE FOR DEFENSE ANALYSES ALEXANDRIA
YAR AF ROBINSON ET AL. OCT 85 IDA-P-1982-YOL-2

UNCLRSSIFIED ID / 0- 5-3 96 DA9 3-84-C-903F/ 9/2 NML

5(

AL
6 2 .2

~ -
1.

I'll' II
1. 11111 4

MICROCOPY RESOLUTION TEST CHART

NATIONAL BuREAU OF STANDARDS- 963- A

I . A

JI. J.

. , , 4 - ; ,. ,4

%4
kq h...

COMMON/ENGMT/ERP(3,11),EBP(3,11),POSRPOSB,LCMBT,
FRBCAS.

ERP Engagement rate for Red

EBP Engagement rate for Blue

POSR Combat posture for Red

POSB Combat posture for Blue

LCMBT Unit type identification of combat units

FRBCAS Force ratio Red to Blue limit for CAS re-
quests

(h.) COMMON/NAMES/NAMER(1I),NAMEB(II).

NAMER Names of Red combat systems

NAMEB Names of Blue combat systems

(i.) COMMON/PRTFLG/PFLAG(20),PMOD(3),PDEBUG

PFLAG Array of user control flags, see Figure 8.

PMOD(1) Message printout for this node only, if
zero do all nodes.

PMOD(2) Output start time

PMOD(3) Output stop time

PDEBUG Debug print flag, if 1 debugger is on

B.2.f(2) Dynamic Data Structure (DDS)

There are three sets of DDS in C3EVAL. They are the NODE,

CRC and GENERIC sets. A set has its root in a non-dynamic loca-

tion and is linked together by pointers. As shown in Figures 16,
"" 17, and 18, the root locations are variables NODE, NCRC and

NREDTE in COMMON/C3/. These structures are created during input

by calls to SUBROUTINE GIMME which acquires data blocks from

dynamic memory. The length of each type data block is a fixed

number in the code. This section lists the data blocks, defines

their elements, gives the type of each variable, identifies the

routine that creates the block and the ones that delete the block

if applicable, and specifies the location of the root.

87

COMMON/C 3 /NODE 1

Pima

PRMSG ~NODE MGDT

SGTAT

PPATO

PDT S

10-010.lO

FiueN6OODDyamcLEkn

AT88

aJ* P *\ . a.a

COUNT*.

COMMOMic/CINCRC

Figure 17: DYNAMIC DATA LINKING

3 COMMON/C 3 INREDTE

GENERIC

Figure 18: GENERIC RED UNIT TABLES OF EQUIPMENT
5. DYNAMIC DATA LINKING

89

C .

The symbols used in the DDS's documented in this section are:

SYMBOL TYPE OF ELEMENT

P Pointer to another DDS

I Integer value

R Real value

C Character

The DDS is traversed by the links shown in Figures 16-18.

While each node is of a fixed length, the number of DDSs in a

single queue is unlimited. Therefore, one node may have only one

destination while another may have several. "
P -

When a specific data element is desired, the program code

uses successive pointers to locate that element.

Example: Find the capacity of communication link
type 16 that connects node 3 to node 4.

1) Find node 3 by starting at COMMON/C3/NODE1. This is

- done in code by setting PNODE=NODEI. This is a location in DM.

From the NODE DDS below, we see that location PNODE contains a

pointer to the next NODE structure and that location PNODE+l

contains the unit identifier. This identifier is compared to the

node number desired (3). If this is not the desired NODE, then

PNODE is reset to MEMORY(PNODE), which is the location of the

next node structure. This series is repeated until the desired
NODE is found. (This can be done by SUBROUTINE FIND.)

2) From the NODE DDS we see that PNODE+3 is a pointer to a

communications destination queue. (The offset PNODE+3 is always

one less than the number in the attachment, because PNODE is the

location of the first element in the DDS.) The DEST (destina-

tion) structure is traversed to find unit identifier 4 in the

same manner that was used in step 1.

90 ~

.p .

*LAWq .W -. -' W t a

3) The DEST DDS contains a pointer to its communications

~ links. These links are traversed until a LINK DDS with type 16

is found.

4) The capacity of this link is located at PLINK+2.

911

BLOCK NAME: ALLOC BLOCK SIZE: 7 .

USE: This structure contains the allocation para-
meters for a commanding unit to use in
approving requests for CAS by its
subordinates.'CREATED BY: INPUTA

DELETED BY: N/A
ROOT: NODE(21) DATE.

INDEX ELEMENT TYPE ELEMENT
NAME MEANING/USE

I PALLOC P Pointer to next allocation structure

2 TYPE I Type of allocation data (3000,3400)

3 SAT I Start allocation tim

*4 NAT I Number of allocation time periods
5 NSOR I Number of sorties allocated

6 MINSOR I Minimum sorties on a mission

7 MAXSOIR I Maximum sorties to be allocated

I a

92

*~~~~~~7 7. .. .7?r * *

BLOCK NAME: ATO BLOCK SIZE: 15
USE: Contains the data portion of a request for

CAS or the response to a CAS request.

CREATED BY: MSGOUT

. DELETED BY: SEND
ROOT: PMSG(18) DATE: ..

: INDEX ELEMENT TYPE ELEMENT

NAME MEANING/USE

1 PAT P Next air task order

2 ID I Support unit number
3 ETIME I Earliest support time OR takeoff time
4 LTIME I Latest support time OR on target time
* ACTYPE I Type of aircraft

1-

-3

-:

A J .. * - . -. .. -

BLOCK NAME: CMBT BLOCK SIZE: 62
USE: The combat data structure contains the

combat weapon systems data for each
combat level unit.

CREATED BY: INPUTC
DELETED BY: not applicable

ROOT: NODE (9) DATE:

INDEX ELEMENT TYPE ELEMENT

NAME MEANING/USE

1CFLAG --0 no combat, =n > O n is period of combat,
=m > 0 m is period of force ratio calculation

2 RATR R Blue ratio
3 RATR R Red ratio
4 RAT4 R Force ratio Reb/Blue
5 BETA R Eigen value of 1/lamda
6-16 NB R Number of Blue weapons

17-27 NR R Number of Red weapons

28-39 EIGB R Eigen vector Blue

39-49 EIGR R Eigen vector Red
50-60 V R Eigen best initial guess

61 POSB I Posture of Blue:
-0 not in combat, =1 Low,
=2 Medium =3 High Intensity

62 POSR I Posture of Red:
=0 not in combat, = I Low,
=2 medium = High Intensity

Ile,

-. '

914

° ~~ ~% .N ."" "/

oU ".o - .. " . - - , .•" ,"." ' % . * ." '. % - . . .- ' " . '

. BLOCK NAME: COUNT BLOCK SIZE: 30
USE: This structure contains the message

counters, limits and other parameters held
for output at each node.

~ CREATED BY: INPUT
DELETED BY: N/A
ROOT: NODE (12) DATE:

F." INDEX ELEMENT TYPE ELEMENT

NAME MEANING/USE

i 1 CIN I Number messages arrive on network

2 COUT I Number messages sent out on network

3 CHOLD I Number messages held by comm. limit
4 CKILL I Input limit to hold messages
5 LINH I Input limit to hold messages
6 LINK I Input limit to kill messages
7 IN I Number messages arrive thru limit
8 IHOLD I Number messages held by input limit
9 IKILL I Number messages killed by input limit
10 LOUH I Output limit to hold messages
11 LOUK I Output limit to kill messages
12 OIN I Number messages sent out thru limit
13 OHOLD I Number messages held by output limit
14 OKILL I Number messages killed by output limit

"" 15

16 CAS Number CAS sorties in combat

17
18 HELO Number helicopter sorties in combat

19-30

.95

...............-

Ok BLODCK NAME: CRC BLOCK SIZE: 5
USE: Contains the parameters for a combat

reporting center and the relationship to its
node structure and wing operations support
unit.

~ CREATED BY: INPUT
DELETED BY: not applicable

ROC ~ C / 3/NCRC DATE:

* INDEX ELEMENT TYPE ELEMIENT
NAME -MEANING/USE

1 PCRC P Next CRC

2 IDI Unit number of CRC

3 TYPE I Unittype of CRC

4 PNODE P Pointer, CRC's node structure

5 PWOC P Pointer, wing ops structure

96

'• .. b

',.

BLOCK NAME: DEST BLOCK SIZE: 9
USE: This structure contains all of the other 1.

nodes which can be communicated with by
the node to which it is attached.

CREATED BY: INPUT

DELETED BY: N/A
ROOT: NODE(4) DATE:

INDEX ELEMENT TYPE ELEMENT -

NAME MEANING/USE

1 PDEST P Pointer to next destination element

2 ID I Destination unit identifier

3 PLINK P Pointer to communications queue

4 PALTI P Pointer to first alternate

5 PALT2 I Pointer to second alternate

6 TYPE I Destination unit type

7 ALOFLG I Allocation flag, =1 allocated

8 Internal flag

9 SUBFLG I Subordinate flag =1 subordinate

9.

--.

,'. 97""

S.- ".N .,'"- ...- r ' ''" ''..,.-.- ','-.,.-' ..-.- < ':' ., - ' , . - ".'". -".,

S BLOCK NAMIE: FOE BLOCK SIZE: 7
USE: Identifies specific red unit as foe of a

subordinate and points to the generic red
unit table of equipment (TE).

~ CREATED BY: STATIN, INTLUP
DELETED BY: INTLUP
ROOT: STATUS(27) DATE:

INDEX ELEMIENT TYEELEMENT

NAMIE MEANING/USE

I PREDTE P Pointer to next FOE structure

2 UTYPE I Type of redunit

3-5 UNITID C Red unit name

6 PGRED P Pointer to generic FOE

7 TIME I Time of unit identification

* . . .-* . ."

BLOCK NAME: GENERIC BLOCK SIZE: 15
USE: Structure for table of equipment for a

generic Red unit.

CREATED BY: INPUTC

DELETED BY: N/A
ROOT: /C 3 /NREDTE DATE:

INDEX ELEMENT TYPE ELEMENT
NAME MEANING/USE

1 PREDTE P Pointer to next generic red TE

2 UTYPE I Type of Red unit

3-13 SYSTEM R Number of combat weapon systems

14 POSTUR I Combat posture

9 -

- ,o

'p •

992.:

7"2
.-..- ~ ~ .-. ~ *'. *; ~..-- ~ * *~ *~ -- -* *-... .

.I ~ . -. - -.- - * . - .I

|" ' r . ikB ~ ~ X~VWtw~~ ~ vw-~..~wu ~i;'k~j ~k~*Ma.- - - -U-~U~

BLOCK NAME: IML BLOCK SIZE: 5
USE: The input message list contains the

variables that indicate specific message
receipt from a designated usit (NODE).

CREATED BY: MSGIN

DELETED BY: not applicable
ROOT: IMT4 - DATE:

INDEX ELEMENT TYPE ELEMENT

NAME MEANING/USE

1 PIML P Next input message list

2 NODE I Unit identifier of originator

3 MFLAG I Flag, message was received

4 MAGE I Age of last input message

5 OTIME I Time last input was originated

V. B-.<

.

100

e- j,%

BLOCK NAME: IMT BLOCK SIZE: 6
USE: The input message type structure contains

the parameters required to process a specific
input mesage type that originated at a specific
unit type. Each IMT has an IML queue.

CREATED BY: RULEIN
DELETED BY: not applicable
ROOT: OMP(3) DATE:

INDEX ELEMENT TYPE ELEMENT

NAME MEANING/USE

I PIMT P Next input message type

2 MSG I Type of input message

3 OTYPE I Type unit that originates message

4 PIML P Input message list

5 MAXAGE I Maximum age of useful message

6 USE I Message use if 0 only once

101

A. '?

7-WR W-Wy-

S BLOCK NAME: INTEL REPORT BLOCK SIZE: 21
USE: Structure for foe identification message

type 3136.

CREATED BY: INTLUP

DELETED BY: ATODEL, INTLUP
ROOT: MSG(18) DATE:

r. INDEX ELEMENT TYPE ELEMENT

_____ NAME MEANING/USE

*1PDATA P Pointer to next data report

2 ORIG I Node identifier of Blue combat unit
3 TIME I Time report data was created
4 TYPE I Type offoe unit

5 POSTUR I Posture of foe unit

S 6-8 NAME C Name of specific unit

9 PINTEL P Pointerto next ITEL report

10-16 Unused

17 PROCES I Input process number

18-21 Unused

102

.-.4

BLOCK NAME: LINK BLOCK SIZE: 6
USE: This structure contains the parameters for

a link between the node and the destination
in the root DEST structure.

CREATED BY: INPUT
DELETED BY: N/A
ROOT: DEST(3) DATE:

INDEX ELEMENTr TYPE ELEMENT
NAME MEANING/USE

1 PLINK P Pointer to next link element

2 LTYPE I Type of link

3 LCAP I Capacity of link

4 PSEND P Pointer to message send queue

5 PHOLD P Pointer to message hold queue

6 PWORK P Temporary queue for allocation

VV

1.0
<*

.5..

-5.

I

.5-

.5.

103

I..

BLOCK NAME: MSG BLOCK SIE: 21
USE: Basic message structure for all messages.

I CREATED BY: ATORTN, EXTMSG, MAXMSG, MSGOUT,
RULEIN,

M DELETED BY: MDELAY, MINLIM, MSGIN, NODE, SEND,
ROOT: NODE(6), (7), (23); LINK(4), (5); IMT (4), DATE:

OMP (4) ".-__

VINDEX ELEMENTTYE121]q
NAME MEANING/USE

PMSG P Pointer to next message element .-

STME I Time to send messages -
3 MTYPE I Type of message
4 GTYPE I Originator of message

DESTI I Destination uniut identifier
PRIOR I Priority of message

LTYPE1 I Primary path type
8 CAP2 I Capacity required on path 19

LTYPE2 I First alternate path type
10 CAP2 I Capacity required on path 2

LTYPE3 I Last alternate type
12 CAP3 I Capacity requried on path 3
13 DEST2 I Alternate unit type
14 CMDR I =1 destination is commander only

5 FLAGI I Output flag
16 FLAG2 I Alternate transmission flag
17 DEST3 I Alternate unit type

" 18
18 PDATA P Pointer to additional data
19 NODE I Unit identifier of originator
20 OTIME I Time message was created
21 MAXAGE I Maximum time to be on the network

-16%

104~

BLOCK NAME: NODE BLOCK SIZE: 23
USE: This structure is the top element for each

node in the game. It is used to locate the
functional structures that contain the node's
characteristics.

CREATED BY: INPUT
DELETED BY: N/A
ROOT: /C 3 /NODE1 DATE:

INDEX ELEMENT TYPE ELEMENT

NAME MEANING/USE

1 PNODE P Pointer to next node
2I I Unit identifier number
3 TYPE I Unit type
4 PDEST P Pointer to destination queue
5 POMP P Pointer to output message process
6 PIMQ P Pointer to input message queue

7 PFMQ P Pointer to future message queue
8 PCMDR P Pointer to commander
9 PCMBT P Pointer to combat data structure
10 PAOPS P Pointer to assigned air support

11 PATO P Pointer to air requests
12 PDATA P Pointer to counters for output
13-15 NAME C Unit name
16 PATR P Pointer to acknowledged requests

17 PFSO P Pointer to requested fire support

18 PFSR P Pointer to approved fire support
19 PSTAT P Pointer to subordinate status queue
20 PSPOT P Pointer to spot report queue

21 PALLOC P Pointer to allocation parameters

22 PFRQ P Pointer to force ratio queue

23 PRMSQ P Pointer to random message queue

105

%~ * % * *.* ~~ *..* ~ *.

W% l - V VV L-

BLOCK NAME: OMP BLOCK SIZE: 11
USE: The output message process structure con-

tains the parameters for message handling.
Each OMP has an IMT queue and a MSG
queue.

CREATED BY: RULEIN
DELETED BY: not applicable

ROOT: NODE(S) DATE:

INDEX ELEMENT TYPE ELEMENT

NAME MEANING/USE

1 POMP P Next output message type

2 RNO I Rule number

3 PIMT P Input message type queue

4 POUT P Output message queue

5 LTIME I Last time this process complete

6 OTYPE I Type unit that originated process

7 CTIME I Time to complete process

8 MFLAG I > 0 minimum current messages to do this process

9 TFLAG I =0 not period
> 0 period interval

10 PRULES P Data element for action

11 STIME I Start time of periodic process '

p106

"" 106..

-' - - . "5" ,':. :..: .a',. . ., ' € .'.,. ,, ._- :., . ,* ...- ~. .b-.! . .-

BLOCK NAME: RDYQ BLOCK SIZE: 3
USE: The aircraft availability queue contains the

number of a specific aircraft type that will
be available for takeoff at a specified time.

CREATEDBY: AIROPS, INPUTADEL= IEBY: not applicable

ROOT: READY (3) DATE:

INDEX ELEMENT TYPE ELEMENT

NAME MEANING/USE

1 PRDYQ P Next aircraft element

2 ACTIME I Time aircraft will be ready

3 NUMAC I Number aircraft to be ready

7-*

I..7w.

BLOCK NAME: READY BLOCK SIZE: 3
USE: Identifies a specific aircraft type under

control of the WOC

S CREATED BY: INPUTA
DELETED BY: not applicable
ROOT: WOC(9) -DATE:

INDEX ELEMENT TYPE ELEMENT

NAME -MEANING/USE

I PREADY P Next aircraft element

2 ACTYPE I Aircraft typ

3 PRDYQ P Aircraft ready queue

108

1%p

BLOCK NAME: STATUS BLOCK SIZE: 43
USE: Status of subordinate units, created if

subordinate flag in input =2.

CREATED BY: INPUT
DELETED BY: N/A
ROOT: NODE(19) DATE:

V INDEX ELEMENT TYPE ELEMENT

NAME MEANING/USE

1 PSTATUS P Pointer to next status structure

2 UN1TID I Identifier of status unit

3 TIMEB I Last time before status updated

4-14 NB I Number of blue weapons

15-25 BLOSS R Number of blue losses
26 TIMER I Last time red status updated

27 PFOE P Pointer to red foe structure
28-38 RLOSS R Number of red losses

39 POSB I Blue posture

40 POSR I Red posture
41 FRB R Red to Blue force ratio
42 PFRQ P Pointer to next status structure in force ratio queue

43 LFRT I Last time force ratio calculated

4-

109

66 .4 N. S

BLOCK NAMIE: SPOT REPORT BLOCK SIZE: 21
USE: Structure for combat loss data for message types

3126 & 3130.

CREATED BY: RPTLOS

DELETED BY: ATODEL
ROOTr: MSG(18) and NODE(20) DATE:

INDEX ELEMEENT TYPE ELEMENT

NAME MEANING/USE
1 PSPOT P Pointer to next data report

2 ORIG I Node identifier to report originator

3 TIME I Time report was created

4 FOE I Flag; =0 foe, =1 subordinate data

5-15 LOSS R Losses of combat systems

16 POSTUR I Posture of unit

17 PROCES I Input process number

18-21 unused

110

SBLOCK NAME: WOC BLOCK SIZE: 10
USE: This structure contains data on aircraft on the

ground and parameters that effect their
assignment to CAS missions

CREATED BY: INPUTA
DELETED BY: not applicable
ROOT: CRC(S) DATE:

INDEX ELEMNENT TYPE ELEMENT
NAME MEANING/USE

1 PWOC P Next WOC

2 ID, I Unit number of WOC

3 TYPE I Unit type of WOC

4 PNODE P WOC's node structure

5 ATIME I Alert response time

6 ETIME I Enroute time

7 MINAC I Minimum aircraft on mission

8 PS R Probability of survivability enroute

69 PREADY P Aircraft ready queue

10 RTEME I Ground turn-around time

B.2.g. Program Notes

This section contains notes on unique situations in the
C3EVAL model and its data bases.

During the development of the code it became convenient to
preassign certain data values. These numbers may be required in

S lthe data sets and their use must coincide with the definitions

below: d

Node type for WOC 7000-

Message number for external air requests 3000,2900

Message number for force ratio air requests 3400

Message number for CAS notifications 7000

Message number for red losses 3126

Message number for blue losses 3130

Message number for foe's identification 3136

Process numbers for random created messages 3800,4800,5800,

6800,7800,5900,7900

~ A message type 3400 is created in subroutine Combat when the

force ratio falls below the input threshold value. The force

ratio is a function of all 11 weapon types against the systems

allocated. If CAS is zero then SAMS will contribute nothing to

!the force ratio. Adding a few blue CAS sorties into combat with

a large number of SAMS with cause the force ratio to shift

significantly to the side with SAMs.

Routine RulPrt has the types of nodes in a data statement.

If additional types are used they will not be printed out on File
*/ C3ECHO unless this array is changed.

The following comments pertain to input values. File C3DATA

has a data set "LMNO." The first value is the input threshold to

hold messages that exceed this count. However, all messages

input at the node that have the same priority are treated the

same. For example, if the hold limit is 5 and there are 3

112

..

% " '. .",* '.- •... • %

priority l's, 3 priority 2's and 3 priority 3 messages, the

algorithm will allow all 3 priority l's and all 3 priority 2's to

be input because the limit fell in the priority 2 count range.

All messages with priorities higher than 2 will be held (if their

data useful time is not exceeded) or deleted. The priority level

algorithm is also applied to messages at the delete limit. The

limits are cumulative (i.e., if the limits are 5 and 9) the num-

ber of candidates to be held is 4).

The third and fourth values are for output limits which

operate the same as input except that the priority level

algorithm is not applied.

Post processing graphics read files TIMET and LOSST to get

their input. These files are created by C3EVAL if the graphic

flag is on in C3DATA, Flag Number 14. Red and blue weapon

strengths and combat postures may be changed during the game.

File CBDATA would have two additional lines of data (1 for red

and 1 for blue) with the desired times for the change. All 11

systems are modified by this input (a minus sign removes forces)

with the exception of blue CAS. This field is not used. All CAS

for blue must be requested through the network and is subejct to

aircraft availability of the WOC. N

Message types that are created by successful completion of a

decision rule are used to create specific messages at a node and

are placed on the message type's primary destination path and

communications type to the receiving node. If the primary path

and communications type does not exist (note capacity may be zero

but the path exists) then the message will be deleted and an

error written on C3TIME.

4 The AODATA file may contain CAS allocation parameters for a

node that commands combat level units. If allocation parameters

exist for the type of CAS request message received, subroutine

ATOALO approves the requests if they meet the allocation criteria

113

of number of sorties currently available to allocate and the -'

priority of the request. This priority is based on the node's

perception of the requestor's force ratio. This force ratio is

calculated by routine PRATIO as the sum of red weapon types one
plus 4 times eleven divided by the blue weapon types one plus 4 "A

times eleven. Requests for CAS are filled completely for each

request as long as sorties are available.

'
'-I

I. 4 k-.%

p.

114

'A

, ..i.

-- N"' ~ ~ ...J . - ~ ~ A~*

~B.2.h. Internal Code Documentation

i ,.

y?.

..

'S "S ,

°5%

p. j

PROGRAM C3EVAL

MAIN PROGRAM, TEST NODE REVISED MAY 6, 1985
* CALLS DMINIT, INPUT, EVENTS, OUTPUT, RESTOR

*INITIALIZE I/O UNITS

*INITIALIZE DYNAMIC MEMORY
Jv RESTART RUN

*INPUT SCENARIO AND TIME ZERO DATA
INPUT RULES AT TIME ZERO
:SIMULATE EVENTS
"PRODUCE FINAL REPORTS AND SAVE STATUS

ifs

.- 11

4.-,..

• ",

C-.%

i.-1-6

SUBROUTINE ALOCAT

ALLOCATE OUTPUT TO LINKS USING CAPACITY AND DIRECT
* COMMUNICATIONS ONLY

* CALLS - FIND, ERROUT, SNAP

GET FIRST NODE
DO FOR ALL NODES

DO FOR EACH MESSAGE ON FUTURE QUEUE
CHECK TIME

MOVE MESSAGE TO HOLD QUEUE
ERROR IN ROUTING

DESTINATION FOUND
FIND LINK TYPE

ERROR IN ROUTING
GET NEXT MESSAGE
DO FOR ALL DESTINATIONS

DO FOR ALL LINKS
FIND LAST SEND MESSAGE
LAST MESSAGE FOUND
MOVE HOLD QUEUE
LOCATE LAST SEND MESSAGE IN CAPACITY 4-

LAST MESSAGE FOUND
MOVE REMAINING MESSAGES TO HOLD QUEUE

END OF SEND QUEUE CORRECTION
GET NEXT LINK

GET NEXT DESTINATION
END OF SEND QUEUE JUSTIFICATION

GET NEXT NODE
LAST NODE COMPLETED

117

.°A.

11 7 &_

**' ~ "~ *'* *~ J ... *- ' ~ -,-*..,

SUBROUTINE ALTOUT

* REVIEW MESSAGES IN HOLD QUEUES TO SEE IF THEY SHOULD
* BE SENT VIA ALTERNATIVE DESTINATIONS

* CALLS MOVMSG, SNAP, FIND

DO FOR ALL NODES
DO FOR ALL DESTINATIONS

SET ALLOCATION FLAG OFF
CHECK NODES ALTERNATES TO THIS DESTINATION

DO FOR ALL LINKS TO THIS DESTINATION
DO FOR ALL MESSAGES ON THIS HOLD QUEUE

MOVE MESSAGES FROM PHOLD TO ALTERNATE 1
BY FIRST MESSAGE ALTERNATE
RECHECK HOLD QUEUE
CHECK IF ALTERNATE 2 EXISTS
MOVE MESSAGES FROM PHOLD TO ALTERNATE 2
BY FIRST MESSAGE ALTERNATE
RECHECK HOLD QUEUE
MOVE MESSAGES FROM PHOLD TO ALTERNATE 1
BY SECOND MESSAGE ALTERNATE
CHECK IF-ALTERNATE 2 EXISTS
RECHECK HOLD QUEUE
MOVE MESSAGES FROM PHOLD TO ALTERNATE 2
BY SECOND MESSAGE ALTERNATE

GET NEXT LINK
GET NEXT DESTINATION

GET NEXT NODE
LAST NODE

L y.

. p.

118

* .

SUBROUTINE CONTRL

READ IN MODE OF OPERATION AND PRINT CONTROL FLAGS
PRINT FLAG (PFLAG(I)) DEFINITIONS

* 1 ALL MESSAGES AT ALTERNATE DESTINATION
* 2 ALL MESSAGES ON INPUT QUEUES

Z ALL MESSAGES ON OUTPUT QUEUES
* 4 ALL MESSAGES ON FUTURE QUEUES
* 5 ALL MESSAGES BEING HELD

, * 6 ALL MESSAGES DELETED
* 7 STATUS OF RULE STRUCTURE
* 8 CAS TAKE OFF SCHEDULED
* 9-10 NOT ASSIGNED
* 11 TRACKED MESSAGES AT ALTERNATE DESTINATIONS

0 12 TRACKED MESSAGES ON INPUT QUEUES
* 12 TRACKED MESSAGES ON OUTPUT QUEUES

* 14 TIME T OUTPUT ON FILE 14 REQUIRED
* 15 COMBAT LOSS VECTORS
* 16 FORCE RATIO CALCULATIONS
* 17 RULE STATUS AT FINAL TIME
* 18 NOT ASSIGNED
* 19 RANDOM PROCESSING REQUIRED
* 20 USED INTERNALLY FOR SUM OF FLAGS

* PRINT MODIFIER (PMOD(I)) DEFINITIONS
* 1 OPTIONAL OUTPUT RESTRICTED TO THIS NODE

h * 2 OPTIONAL OUTPUT STARTS AT THIS TIME -
* 3 OPTIONAL OUTPUT STOPS AFTER THIS TIME

--

119
.-.- *

SUBROUTINE DMINIT(MEMORY, MPTR, IGBPTR. MAXDM)

* INITIALIZE DYNAMIC MEMORY

*INITIALIZE MEMORY POINTER
*INITIAIZE GARBAGE POINTER
*CLEAR DYNAMIC MEMORY

[K:
1.

."

S .a

h' 'a''''''''''i . .. '''''' '''''' ,.- ..' .."'' . .' -. ., ''' . ''''', ''' ". --.-,•... ,-., ' '' ,,

SUROTIEERROUT(MESAGE) >
SUBROUTIN

* PRINT OUT ERROR CONDITIONS AND STOPS EXECUTION

C. ,

.4"

I.
~

.

.- 4

.°4

121*

U-"r ¢amL%2: , ." •
' : . , '

e-*""
"

" '' * " " :' ' "" :'
"

-" :" -" "' "" "-" ' '

SUBROUTINE EVENTS

* PROCESS SIMULATION EVENTS FROM CURRENT TIME TO END
* OF RUN TIME
* CALLS MSGIN, NODE, COMBAT, AIRBAS, TIMOUT

INITIALIZE CMDRS STATUS BLOCK
START OF EVENTS IN A TIME INCREMENT

PROCESS TIME T INPUT
PROCESS EXTERNAL MESSAGES
PROCESS NETWORK
PROCESS AIRBASE
PROCESS COMBAT
CREATE OUTPUT
PRODUCE TIME T OUTPUT IF REQUIRED
TEST FOR LAST TIME INCREMENT

INCREMENT GAME TIME
END OF GAME TIME

12.

.

Si'°

-%. * S.\

SUBROUTINE EXTMSG

GET MESSAGE FROM USER INPUT FOR CURRENT TIME
U* MESSAGE ON ORIGINATORS FUTURE QUEUE
INPUT FOR MESSAGE

*SEND TIME

*, MESSAGE TYPE
ORIGINATOR UNIT TYPE

*DESTINATION UNIT ID
" MESSAGE CREATION TIME

*TRACKING FLAG
* ATO FLAG

* MESSAGE PRIORITY
S * TIME IN NETWORK
S * ** ATO DATA
* COMBAT UNIT ID
'" * EARLIEST TIME ON TARGET

'. * LATEST TIME ON TARGET
* AIRCRAFT TYPE

"* * NUMBER OF AIRCRAFT
* * TYPE REQUEST, 0-PREPLAN I-IMMEDIATE

SKIP OVER HEADER DOCUMENTATION
;- GET FIRST MESSAGE

CHECK FOR CURRENT TIME
PROCESS THIS MESSAGE
CHECK FOR ADDITIONAL DATA

GET ADDITIONAL DATA
END ADDITIONAL DATA

FIND NODE OF DESTINATION
PUT ON INPUT QUEUE
GET NEXT EXTERNAL MESSAGE

END PROCESSING THIS TIME FRAME

123

. . - . *. ~ *. . a.,. j. ... * *. N.,'..N

~-

SUBROUTINE EXTSPT(PMSG,PDATA)
-"

* EXTSPT GETS THE DATA SECTIONS OF EXTERNAL MESSAGES 3136
" AND PLACES THEM INTO THE DATA POINTER OF THE MESSAGE

GET FIRST INTEL REPORT
GET ADDITIONAL DATA ELEMENTS OF THE REPORT

,.

124

i

* "

".;- .)--...-...........-...-:-....:. . . :-, : . ; .:";''," ").",

SUBROUTINE FIND(PIN, N, ID, POUT)

*FIND A POINTER IN A QUEUE

*INPUT

* PIN - POINTER TO TOP OF QUEUE TO BE SEARCHED
N - OFFSET FROM PIN TO COMPARE

* ID - VALUE TO MATCH WITH N

*CREATES

* POUT - POINTER TO DESIRED ELEMENT

DO FOR ALL QUEUE ELEMENTS
GTCOMPARE VALUES
GTNEXT ELEMENT

END OF SEARCH

r-e-

I SUBROUTINE GIMME(NPTR, LEN, ISPACE)

* PROVIDE A BLOCK OF STORAGE FROM DYNAMIC MEMORY

* INPUT
* LEN - LENGTH OF BLOCK

* ISPACE - ARRAY THAT CONTAINS DYNAMIC MEMORY

" OUTPUT
* NPTR - POINTER TO START OF ALLOCATED BLOCK

- ** ******** ********* *** *** * ** ****** ********* *** *** * *** ****** *

*SEGMENT GET VIRTUAL SPACE

*IOUT IS OUTPUT DEVICE
* SEARCH GARBAGE LIST
*DO UNTIL LIST ENDS

*IF (SIZE .EQ. LENGTH) THEN
*SET PTR TO FIRST BLOCK
*SNAP GARBAGE PTR

*ALLOCATE VIRGIN STORAGE
*UPDATE VIR SPACE PTR
*STORAGE OVRFLOW
*ZERO SPACE BLOCK
*END SEGMENT

h !

ILI~

.126Sr* . ~ ~ * *~~. . .~

SUBROUTINE HOLDQ1 (IPASS)

* MOVE PRIORITY MESSAGES FROM HOLD QUEUE TO ALTERNATE
* COMMUNICATIONS LINKI SEND QUEUE

* CALLS - SNAP, FIND
** ********** ** ****s** * ******** **** ****** ******* * ******

* INPUT
* IPASS - FLAG FOR SELECTION OF DESTINATION

DO FOR ALL NODES
DO FOR ALL DESTINATIONS
SET ALLOCATION FLAG OFF

DO FOR ALL LINKS
DO FOR ALL MESSAGES ON HOLD QUEUE

SET UP FOR MULTIPLE DESTINATIONS
GET ALTERNATE DESTINATION
CHECK IF ALTERNATE EXISTS

FIND DESTINATION STRUCTURE
GET FIRST ALT LINK OF MESSAGE
CHECK FOR 0 TYPE
GET ALTERNATE LINK
COMPARE LINK TYPES

LINK TYPES MATCH
CHECK ALTERNATE LINK HOLD QUEUE PRIORITY
CHECK SEND QUEUE

HOLD MESSAGE HAS GREATER PRIORITY
CHECK CAPACITY

PUT HOLD MESSAGE ON SEND QUEUE
SET FLAG = 1

GET NEXT SEND MESSAGE
END OF SEND QUEUE
GET NEXT LINK

GET NEXT MESSAGE ON HOLD QUEUE
END OF HOLD QUEUE

GET NEXT LINK
END OF FIRST LINK LOOP

MOVE EXCESS MESSAGES FROM SEND TO HOLD QUEUES
DO FOR ALL LINKS

DO UNTIL LINK CAPACTITY USED
GET CORRECT CAPACITY

GET NEXT MESSAGE
MOVE EXCESS MESSAGES TO HOLD QUEUES

CHECK FOR ALTERNATE STATUS
PLACE IN THIS LINK HOLD QUEUE
END THIS MOVE

PLACE IN ANOTHER QUEUE
GET NEXT MESSAGE

END MESSAGE MOVES
GET NEXT LINK

END OF LINK QUEUE
GET NEXT DESTINATION
END OF DESTINATION QUEUE

""127]

'r -jw

GET NEXT NODE
LAST NODE COMPLETED

128-

SUBROUTINE HOLDQ2 (IPASS)

* MOVE PRIORITY MESSAGES FROM HOLD QUEUE TO ALTERNATE
* COMMUNICATIONS LINK.2 SEND QUEUE

* CALLS - SNAP, FIND

* INPUT
* IPASS - FLAG FOR ALTERNATE DESTINATIONS

DO FOR ALL NODES
DO FOR ALL DESTINATIONS
SET ALLOCATION FLAG OFF

DO FOR ALL LINKS
DO FOR ALL MESSAGES ON HOLD QUEUE

SET UP FOR MULTIPLE DESTINATIONS
GET ALTERNATE DESTINATION

.- CHECK IF ALTERNATE EXISTS
FIND DESTINATION STRUCTURE JZ,

GET SECOND ALT LINK OF MESSAGE
CHECK FOR 0 TYPE

b GET ALTERNATE LINK
COMPARE LINK TYPES

LINK TYPES MATCH
CHECK ALTERNATE LINK HOLD QUEUE PRIORITY
LINK TYPES MATCH, CHECK SEND QUEUE

HOLD MESSAGE HAS GREATER PRIORITY
CHECK CAPACITY

PUT HOLD MESSAGE ON SEND QUEUE
SET FLAG = 2

GET NEXT SEND MESSAGE
END OF SEND QUEUE
GET NEXT LINK

*GET NEXT MESSAGE ON HOLD QUEUE
END OF HOLD QUEUE

GET NEXT LINK
END OF FIRST LINK LOOP

MOVE EXCESS MESSAGES FROM SEND TO HOLD QUEUES
DO FOR ALL LINKS

DO UNTIL LINK CAPACITY USED
GET CORRECT CAPACITY

GET NEXT MESSAGE
. MOVE EXCESS MESSAGES TO HOLD QUEUES

CHECK FOR ALTERNATE STATUS
PLACE IN THIS LINK HOLD QUEUE
END THIS MOVE

PLACE IN ANOTHER QUEUE
GET NEXT MESSAGE

END MESSAGE MOVES
GET NEXT LINK

END OF LINK QUEUE
GET NEXT DESTINATION

, END OF DESTINATION QUEUE

129

GET NEXT NODE
LAST NODE COMPLETED

130'

SUBROUTINE INPUT

* WORKS FOR T - 1 ONLY

* CALLS FIND, GIMME

CHECK FOR TIME T DATA
PUT TIME T DATA ON UNIT 11

NODE IN
~ CHECK IF NODE STRUCTURE EXISTS

CREATE NEW NODE STRUCTURE
INITIALIZE NEW NODE STRUCTURE
CREATE MESSAGE COUNT STRUCTURE

CREATE DESTINATION STRUCTURE
CREATE STATUS STRUCTURE FOR SUBORDINATES

SET COMMANDER ID
END NODE IN
INPUT NODE MESSAGE PROCESSING LIMITS

CHECK FOR TIME T DATA
PUT TIME T DATA ON UNIT 12

INPUT COMMUNICATIONS LINK DATA
CHECK FOR TIME T DATA
PUT TIME T DATA ON UNIT 13

PROCESS FOR EACH END OF LINK
FIND ORIGIN
FIND DESTINATION ""-
CREATE LINK STRUCTURE
PUT LINK ON END OF QUEUE

END OF LINK QUEUE FOUND
INITIALIZE LINK DATA
CHECK FOR SECOND PASS
SWAP NODES AND REPEAT PROCESS
END OF LINK IN

. INITIALIZE OUTPUT MESSAGE PROCESS
PROC IN
INPUT COMBAT DATA
INPUT AIR OPERATIONS DATA
INITIALIZE ALL ALTERNATE DESTINATION POINTERS, DESTINATION
UNIT TYPES, AND POINTER TO COMMANDERS

DO FOR ALL NODES

A REPLACE COMMANDER UNIT NUMBER WITH POINTER

DO FOR ALL DESTINATIONS
FILL IN DESTINATION UNIT TYPE
REPLACE DESTINATION ALTERNATES WITH POINTERS
CHECK ALL DESTINATIONS FOR BOTH ALTERNATES
SET ALTERNATE 1
SET ALTERNATE 2 '
GET NEXT DESTINATION "5

GET NEXT NODE
LAST NODE CHANGED
PREPARE TIME T FILES FOR USE

1315e~,

SUBROUTINE MOVMSG(PMSG, PMSGO, PDEST, IUNIT, IALT)

* MESSAGES IN THE PMSG QUEUE ARE COMPARED TO DESTINATION
* UNIT TYPE AND TO MESSAGES IN THE PDEST PSEND QUEUE
* FOR LINK TYPE, PRIORITY AND CAPACITY. APPROPRIATE
* MESSAGES ARE MOVED AND LOWER PRIORITY MESSAGES ON THE

**SEND QUEUE WILL BE BUMPED.

* INPUT
* PMSG - POINTER TO SOURCE QUEUE
* PMSGO - LOCATION OF PMSG
* PDEST POINTER TO A DESTINATION STRUCTURE
• IUNIT DESTINATION UNIT
* IALT ALTERNATE DESTINATION FLAG

- FIRST ALT - 1, 2ND ALT 2

Ll SET ALTERNATE FLAG
DO FOR ALL MESSAGES -

CHECK MESSAGE FOR NO ALTERNATE
CHECK FOR DESTINATION UNIT : :

UNIT OK, TRY EACH LINK
GET LINK
LINK TYPE MATCHES
PUT MESSAGE ON SEND QUEUE BY PRIORITY

CHECK CAPACITY
PUT MESSAGE ON SEND QUEUE
RESET TRANSMISSION FLAG

GET NEXT MESSAGE ON SEND QUEUE
LINKS DONT MATCH, GET NEXT LINK

END LINK QUEUE
UNIT TYPE WRONG ,*

LAST DESTINATION
GET NEXT MESSAGE ON MESSAGE QUEUE

. LAST MESSAGE PROCESSED

"

.

i 132

SUBROUTINE MSGIN(PMSG, POMP, PNODE)

* MSGIN LOGS AN INPUT MESSAGE INTO EACH OUTPUT TYPE BY
* ORIGINATOR AND INPUT TYPE, SAVES MESSAGE DATA AND
* DELETES MESSAGE SPACE

* CALLS GIMME, RELEAS

* INPUT
* PMSG - POINTER TO INPUT MESSAGE
* POMP - POINTER TO DESTINATION NODE

OUTPUT MESSAGE TYPE QUEUE

:; GET INPUT MESSAGE TYPE
GET INPUT MESSAGE ORIGINATOR AND TYPE
DO FOR ALL OUTPUT TYPES

GET FIRST INPUT POINTER
DO UNTIL INPUT TYPE FOUND

TEST MESSAGE TYPE
TEST ORIGINATOR TYPE UNIT

LOOK FOR EXISTING UNIT LOG
GET NEXT LOG
ORIGINATOR NOT ON LIST, CREATE ENTRY
PUT RULE NUMBER IN DATA STRUCTURE

SET FLAG AND AGE
CHECK FOR OTIME; IF OLD END PROCESS
SET MESSAGE TRACK FLAG

NEXT INPUT TYPE
NEXT OUTPUT TYPE
LAST POMP, SAVE MESSAGE DATA
CASE (MESSAGE TYPE)

AIR OPERATIONS
*PUT ATO ON ORDER QUEUE

PUT ATO ON REQUEST QUEUE
SET RETURN NODE POINTER

SPOT LOSS REPORT
* END MSGIN

133

p.

~133

V ' ."- " . 4 * ."- : -"% : " ° ""¢". .9;'."* -'. '-"- -ci4 *." "'- .' - '' ' * '- ,'-'

.,p- ' '. - , -- -.Z- - : - . -. _ % . . . - - -: -_ : . . t : " .

SUBROUTINE NODE

* PROCESS C3 EVENTS

* CALLS - FIND, ERROUT, SNAP, MSGIN, MSGOUT. ALOCAT,
ALTOUT, LIMIT, SEND

PROCESS INPUT MESSAGES
OPTIONAL PRINT
IF(PFLAG(20).EQ.0) GO TO 8
ALTERNATE DESTINATIONS
INPUT QUEUES
GET FIRST NODE
DO FOR ALL NODES

GET NODE IDENT.
LIMIT NUMBER OF INPUT MESSAGES
DO FOR ALL MESSAGES ON INPUT QUEUE

IF MESSAGE IS ADDRESSED TO ANOTHER NODE
REROUTE MESSAGE, PUT ON HOLD QUEUE

FIND DESTINATION LINK
ERROR IN ROUTING

DESTINATION FOUND, SNAP IN
RESET ALTERNATE COMMUNICATION FLAG
FIND LINK TYPE
CHECK LINK EXISTANCE

TRY FIRST ALTERNATE LINK
LINK MATCHES, MODIFY MESSAGE

TRY SECOND ALTERNATE LINK 'A

LINK MATCHES, MODIFY MESSAGE
DELETE MESSAGE

USE DECISION RULES FOR MESSAGE PROCESSING
GET NEXT MESSAGE

LAST MESSAGE, GET NEXT NODE
RETURN ANY HELD INPUT MESSAGES TO IMQUEUE

LAST NODE
PROCESS DECISION RULES

GET FIRST NODE
DO FOR ALL NODES

DO FOR ALL OUTPUT MESSAGE TYPES
GET FIRST TYPE OUTPUT

TEST FOR PERIODIC PROCESS
CHECK FOR PERIODIC TIME

TEST FOR FIRST TIME FOR PROCESS
TEST FOR RANDOM PROCESS
DO FOR ALL INPUT MESSAGE TYPES
GET FIRST TYPE INPUT
INITIALIZE FLAG SUM

DO FOR ALL INPUT MESSAGES
INCREMENT AGE
TEST FOR SINGLE USE FLAG

TEST FOR USE OF MESSAGE
TEST AGE GREATER THAN LIMITe SET FLAG TO OLD
SUM INPUT FLAGS
TEST FOR EACH MESSAGE TO CREATE A PROCESS

. .. 3.4

GET NEXT INPUT MESSAGE
GET NEXT INPUT TYPE

INPUT TYPES COMPLETE, TEST FOR OUTPUT
OUTPUT ACTION REQUIRED
OUTPUT ACTION IS PERIODIC

GET NEXT OUTPUT TYPE
GET NEXT NODE

LAST NODE
LIMIT MESSAGES PROCESSED
ALLOCATE OUTPUT TO LINKS
ADD ALTERNATE ROUTINGS
ADJUST LINKS TO LIMIT
SECOND ALTERNATE ROUTINGS
ADJUST LINKS TO LIMIT
FIRST ALTERNATE DESTINATION

LINK2
SECOND ALTERNATE DESTINATION

LINK 2
THIRD ALTERNATE ROUTING
OPTIONAL PRINT

OUTPUT QUEUES
FUTURE QUEUES
HOLD QUEUES

SEND MESSAGES
END OF NODE PROCESSING
*DO UNTIL LIST ENDS

..

V

i-I.-

~35

SUBROUTINE OUTPUT
* PRODUCES A SUMMARY OF MESSAGE TRAFFIC AND CLOSE AIR SUPPORT

IOUT IS OUTPUT DEVICE
DO FOR ALL NODES

DO FOR ALL DESTINATIONS
DO FOR ALL LINKS

DO FOR ALL MESSAGES ON HOLD
GET NEXT MESSAGE

GET NEXT LINK
GET NEXT DESTINATION

GET NEXT NODE
LAST NODE

-. de

p.1

."%.

%"%

.--.

,p..

L.A- ' . - . . £4 . -< -. - - -_ -. . ,-- i ar, ' - ' J< " -

SUBROUTINE PMSG1(PF)

* PRINT OUT ALTERNATE DESTINATION, INPUT AND FUTURE
* MESSAGES UNDER PRINT FLAG CONTROL
* INPUT
* PF - 1 ALTERNATE DESTINATION
* 2 INPUT QUEUES
* 4 FUTURE QUEUES

IOUT IS OUTPUT DEVICE
PRINT ALL NODES

TEST FOR ALTERNATE DESTINATION
GET NEXT NODE

TEST FOR ALL INPUT MESSAGES
TEST FOR FIRST PRINT TIME

TEST FOR LAST PRINT TIME
TEST FOR SPECIFIC NODE PRINT

PRINT ALL NODES
TEST FOR ALTERNATE DESTINATION

GET NEXT NODE
PRINT SPECIFIC NODE

TEST FOR ALTERNATE DESTINATION
TEST FOR TRACKED MESSAGES

PRINT TRACKED MESSAGES ONLY
TEST FOR ALTERNATE DESTINATION
TEST FOR TRACKING FLAG
GET NEXT NODE

I-

*. 1

137

-a p

SUBROUTINE PMSG2(PF)

* PRINT OUT ALTERNATE OUTPUT AND HOLD
* MESSAGES UNDER PRINT FLAG CONTROL
* INPUT
* PF = 3 OUTPUT QUEUES

5 HOLD QUEUES

IOUT IS OUTPUT DEVICE
p TEST FOR ALL INPUT MESSAGES

TEST FOR FIRST PRINT TIME
TEST FOR LAST PRINT TIME

TEST FOR SPECIFIC NODE PRINT
2 PRINT ALL NODES

GET NEXT LINK
GET NEXT DESTINATION

GET NEXT NODE
PRINT SPECIFIC NODE

GET NEXT LINK
TEST FORGET NEXT DESTINATION
TEST FOR TRACKED MESSAGES

PRINT TRACKED MESSAGES ONLY
GET NEXT LINK

GET NEXT DESTINATION
GET NEXT NODE

- o

~138

',..

SUBROUTINE RELEAS (NPTR,LEN, ISPACE)

*SEGMENT RELEASE PUTS STORAGE ON GARBAGE LIST

*IOUT IS OUTPUT DEVICE
*CHECK BAD PTR. LEN
**DO UNTIL NO GARBAGE EQUAL LENGTH
*END DO
*SNAP IN SPACE
*GARBAGE LENGTH NOT KNIOWN
*PUT STORAGE ON GARBAGE LIST
*END SEGMENT

.139

SUBROUTINE SEND

* MOVES MESSAGES FROM ORIGINATOR SEND QUEUE TO
* DESTINATION INPUT QUEUE, UPDATES LINK CAPACITIES AND
* DELETES OUT OF TIME MESSAGES ON HOLD QUEUES

* CALLS - FIND, RELEAS

DO FOR ALL NODES
*DO FOR ALL DESTINATIONS

GET DESTINATION NODE
DO FOR ALL LINKS

INCREMENT MESSAGE SENT COUNTER
MOVE CONTENTS OF SEND QUEUE TO DESTINATION INPUT
MERGE CONTENTS OF SEND AND INPUT QUEUES
FIND LAST MESSAGE ON SEND QUEUE
LAST MESSAGE FOUND
GET NEXT LINK
DO FOR ALL MESSAGES ON HOLD

CHECK AGE OF MESSAGE
DELETE THIS MESSAGE

DELETE DATA STRUCTURE
DELETE MESSAGE STRUCTURE

GET NEXT MESSAGE
GET NEXT LINK

GET NEXT DESTINATIONW' GET NEXT NODE
LAST NODE

.4.

L.

'.

.°.

. -.

SUBROUTINE SNAP(PTR, NWORD, PIN,ISPACE)

* SUBROUTINE SNAP PLACES A RECORD IN SORTED ORDER IN A QUEUE

* INPUT
* PTR - POINTER TO ROOT OF QUEUE

NWORD - OFFSET IN RECORD STRUCTURE FOR SORT VALUE
PIN - POINTER TO RECORD TO BE INSERTED
ISPACE - ARRAY THAT CONTAINS DYNAMIC MEMORY

*EMPTY QUEUE - MAKE FIRST RECORD

*INSERT BEFORE RECORD

*INSERT BEFORE 1ST RECORD

*INSERT AFTER LAST RECORD

141.

- 1141

......................

SUBROUTINE SAVE

* DYNAMIC MEMORY AND COMMON VALUES ARE WRITTEN TO A FILEP * AS PHYSICAL STRUCTURES. THIS FILE MAY BE USED TO
* RESTART THE SIMULATION AT THE POINT WHERE IT LEFT OFF.

S SAVE COMMON VARIABLES
SAVE DYNAMIC MEMORY

p'-o

Eli

.

%%12.

".'"'"7 ."-".'.', ' ''",'.",".'',"".; ,'-.'-,;--- . " ,'."- "-;::,- .- .- € ". " ". ".%,'-..' , -¢"-..-.,- . .',.',,'-." '- '. ,-\ .'.'',''.'.'-..'-...9 ,

SUBROUTINE TIMOUT(HEAD)

*PRINT OUT EACH MESSAGE THAT HAS ITS OUTPUT FLAG SET

IOUT IS OUTPUT DEVICE
DO FOR ALL NODES

DO FOR ALL DESTINATIONS
DO FOR ALL LINKS

DO FOR ALL MESSAGES ON HOLD
GET NEXT MESSAGE

REPEAT FOR SEND QUEUE
GET NEXT LINK

GET NEXT DESTINATION
GET NEXT NODE
LAST NODE

fiq

,,%

is• * s..*** S* * ,,. .- . -; , ' " . , ';. ,, .

. "'7 . . -

SUBROUTINE RESTOR

* DYNAMIC MEMORY AND COMMON VALUES ARE READ FROM A FILE
* INTO MEMORY AS PHYSICAL STRUCTURES. THIS FILE IS
* CREATED BY SUBROUTINE STORE.

RESTORE COMMON VARIABLES
RESTORE DYNAMIC MEMORY

V°

IL

.j

144'

.°° .-
;.-.-..-

...- :-:..

* .°•°."Cv.". ".L
, '

. .","."i , J* "*•-"* '". . - " ' ,° %. ' °." ''%Z ' """% . " . "**. -"- .' .*•" ,. -

SUBROUTINE RULEIN

* CREATES OUTPUT MESSAGE PROCEDURES AND REQUIRED INPUT
* MESSAGE TYPES FOR EACH NODE. ALSO CREATES THE GENERIC
* OUTPUT MESSAGES FOR EACH RULE. GETS DATA FROM
* COMMON/RULE/ SET BY BLOCK DATA RULES.

INCLUDE READ RULE DATA
DO FOR EACH PROCESS RULE IN BLOCK DATA
CREATE OUTPUT MESSAGE QUEUE

CHECK EXISTING QUEUES FOR THIS RULE NUMBERNEW RULE !
RULE EXISTS, SET POINTER & SKIP CREATE QUEUE

FIND NEXT MESSAGE FOR THIS RULE
PUT MESSAGE ON QUEUE
GET MESSAGE STRUCTURE
GENERIC MESSAGE COMPLETE, GET NEXT MESSAGE

OUTPUT MESSAGE QUEUE COMPLETE
DO FOR EACH NODE OF THIS TYPE

GET RULE STRUCTURE ,.
DO FOR EACH MESSAGE REQUIRED FOR THIS RULE

FIND NEXT INPUT MESSAGE FOR THIS RULE
CREATE INPUT MESSAGE STRUCTURE
GET AN INPUT MESSAGE STRUCTURE
INITIALIZE INPUT MESSAGE QUEUE

END OF INPUT MESSAGE PROCESSING
GET NEXT NODE

END OF NODES
GET NEXT RULE

END OF RULES, PRINT RULES OUT

IL

.o4

'S,-

SUBROUTINE RDRULE
*** ************ * * ** ****

* THIS ROUTINE READS THE THREE SETS OF DATA THAT MAKE UP
* THE COMMMAND POST RULES.

READ IN THE PREAMBLE DOCUMENTATION
READ THE RULE DATA SET

READ RULES
READ THE INPUT MESSAGE REQUIREMENTS

READ INPUT MESSAGES
READ THE OUTPUT MESSAGES

READ OUTPUT MESSAGES
END OF RULE INPUT

* PRINT OUT RULES

* IOUT IS OUTPUT DEVICE
DO FOR ALL NODES

DO FOR ALL INPUT MESSAGE TYPES
DO FOR ALL INPUT MESSAGE LISTS .
NEXT INPUT MESSAGE TYPE

PRINT OUT GENERIC MESSAGES
GET NEXT MESSAGE

GET NEXT POMP
GET NEXT NODE
LAST NODE

el

. .- ..

*- - - - - - -

lv. -l"~ Vl p.' W

SUBROUTINE RULPRT

ECHOES OUT THE INPUT RULES

DO FOR ALL LEVELS
DO FOR ALL PROCESSES

DO FOR ALL INPUT MESSAGES

147~..

--

.4'

9o.

"-" I1.

SUBROUTINE LIMIT

* LIMITS THE MESSAGE TRAFFIC ON EACH LINK TO THE TWO WAY MAXIMUM
* CAPACITY

DO FOR ALL NODES
DO FOR ALL DESTINATIONS

TEST IF LIMITING HAS BEEN DONE FOR THIS DESTINATION
SET LINK RECEIVER
SET RECEIVER'S DESTINATION

DO FOR ALL LINKS
INITIALIZE COUNTERS
FIND RECEIVERS LINK
DO UNTIL CAPACITY USED
CHECK PRIORITY OF BOTH MESSAGES

TOP OF SEND LOOP
GET CAPACITY FOR MESSAGE
CHECK OTHER END OF LOOP

GET CAPACITY FOR MESSAGE
BOTH QUEUES ENDED IN CAPACITY

LINK CAPACITY EXCEDDED
A CORRECT LINK CAPACITY USED

MARK THE END OF BOTH SEND QUEUES
PROCESS BOTH QUEUES TO HOLD QUEUES
MOVE EXCESS MESSAGES TO HOLD QUEUES

PRIORITY CHECK
PRIORITIES SAME, CHECK CAPACITY

PUT MESSAGE BACK ON SEND QUEUE
END OF CAPACITY RECHECK

END OF EQUAL PRIORITY CHECK
PLACE IN APPROPRIATE QUEUE
FIND DESTINATION
FIND LINK
RESET FLAG
GET NEXT MESSAGE

END MESSAGE MOVES
4. INITIALIZE FOR SECOND PASS

GET NEXT LINK
GET NEXT DESTINATION
FLAG BOTH DESTINATION QUEUES AS COMPLETED

GET NEXT NODE
LAST NODE

1."

'A

SUBROUTINE POUT (MEMORY. NUN. LENGTH)I

* SUBROUTINE POUT PRODUCES A SNAP SHOT OF PART OF DYNAMIC
S * MEMORY

""A

..- t.

ha

SUBROUTINE MAP

* SUBROUTINE MAP COMPUTES THE FORCE RATIOS BETWEEN RED AND BLUE FORCES
* DESCRIPTION OF INPUTS FOR RED FORCES ARE

NTRJ-NUMBER OF TYPES OF WEAPONS-RED
NAMER(J)-NAMES ASSOCIATED WITH EACH OF THE NTRJ WEAPONS
NTCR(J)-NUMBER OF TYPE-J RED WEAPONS (TYPICAL CASE)

* '" NR(J)-NUMBER OF TYPE-J RED WEAPONS (ACTUAL)
* ER(J)-ENGAGEMENTS, PER TIME PERIOD, FOR EACH RED TYPE-J WEAPON
*_ ALTCRB(JI)-ALLOCATION (TYPICAL-CASE) RED AGAINST BLUE

PKRB(J,I)-PROBABILITY THAT RED J KILLS BLUE I GIVEN ENGAGEMENT
DESCRIPTION OF INPUTS FOR BLUE FORCES ARE

" NTBI-NUMBER OF TYPES OF WEAPONS-BLUE
NAMEB(I)-NAMES ASSOCIATED WITH EACH OF THE NTBI WEAPONS
NTCB(I)-NUMBER OF TYPE-I BLUE WEAPONS (TYPICAL CASE)

* NB(I)-NUMBER OF TYPE-I BLUE WEAPONS (ACTUAL)
* EB(I)=ENGAGEMENTS, PER TIME PERIOD, FOR EACH BLUE TYPE-I WEAPON

ALTCBR(I,J)=ALLOCATION (TYPICAL-CASE) BLUE AGAINST RED
PKBR(I,J)-PROBABILITY THAT BLUE I KILLS RED J GIVEN ENGAGEMENT

* THE ALGORITHM IS SET UP TO ACCEPT NO MORE THAT 11 DIFFERENT W

TYPES.

* ALLOCATION IS COMPUTED TWICE, RED AGAINST BLUE AND BLUE AGAINST
*-' COMPUTE THE KILL RATE MATRICES (ACTUAL CASE)

SET ENGAGEMENT RATES
* COMPUTE K (ACTUAL CASE) J.

* OUTPUT THE INPUTS

.

.d.;

. SUBROUTINE ALLO(ALBCX, NBCY NYNTX, NTY, A)

* THIS ROUTINE COMPUTES THE ACTUAL CASE ALLOCATION MATRICES

I ALLOCATION MATRICES ARE COMPUTED EXCLUSIVE OF METHOD SUBROUTINES.

--..

- .

a%

.-"

* I

• 151

SUBROUTINE COMBAT

* INTERFACE TO METHOD 4 CALCULATION OF APP AND THEN
* CALCULATES THE COMBAT DRAW DOWN

DO FOR ALL NODES
CREATE CAS REQUEST IF FORCE RATIO REQUIRES

CHECK FOR ACTIVE ATO IN EXISTANCE
REQUEST CAS
TEST FOR RANDOM DELAY INDICATED
PUT MESSAGE ON FUTURE QUEUE IN TIME SEQUENCE

152

"j
!A2

SSUBROUTINE EIGENV(RB,BR,M,N,VR,VB,ALAM)

*THIS ROUTINE COMPUTES THE EIGEN VALUES AND LAMBDA FOR METH5 AND 4

MAXIMUM NUMBER OF ITERATIONS TO FIND AN EIGENVECTOR IS MNIE
" SMALLEST DIFFERENCE IN EIGENVALUES IS EFCE.

SMALLEST ALLOWABLE DENOMINATOR (TO AVOID DIVISION BY ZERO) IS EPSL

*Iq5

-'

I ,. !

* o!

, 253

A% A. -.

SUBROUTINE INPUTC*** ** * -.* ******** -.*-**-* * **.** * * *** *.* *** * * * -

* INPUT COMBAT VALUES
[] * LCMBT - TYPE UNIT IN COMBAT

* MTIME - TIME INCREMENT FOR COMBAT CALCULATION
*FRBCAS - FORCE RATIO, RED/BLUE LIMIT FOR CAS

* NODE - UNIT NUMBER
* POSR,POSB - POSTURE OF UNIT,O = RESERVE, 1 = OFFENSE,
*2 - DEFENSE, 3 = RETREAT

m * NR,NB - NUMBER OF COMBAT SYSTEMS
* V - INITIALIZED TO 1. FOR EIGEN VALUE BEST GUESS

* READ IN THE INPUTS AND PRINT THEM OUT

READ IN PREAMBLE DOCUMENTATION
- READ IN GENERIC RED UNIT DATA

READ IN DATA VALUES,e

hp

"'2

.-

154

• ")'- - ''-' '".',2" "''" "'- " -.-. . "."-/ "- '-"'."'- -- .- -- ,-. .'- -' ,'- .- '.," . - - -'--". '. ". ". .- •.- .- " -"o

,. 4'

-
% URUIEKLSEPXLX J IAX) * -

I.

'.

- 155

: 4..ix .i:::.2:S . 6 22.S:, : ; : .::?:% g~k: :::.): ::. :9?:? ::6 :): .?: :: ::: ;: a'-i

2 SUBROUTINE METH4 *

SUBROUTINE METH4 CALCULATES THE FORCE RATIO
, **888*8*********888***8**88*****8* * * * * ** ** * *8**** **

, SET EACH ELEMENT OF THE BEST GUESS ARRAY TO 1

,% %

-Vp

h

;" I, i.

" . . .

. , . ,, , .C.., . . . , ._ _ _ _ ; . , _ _ ; : :

SSUBROUTINE MPROD(ABNM, L,R)
."

* THIS SUBROUTINE MULTIPLIES TWO MATRICES.
°

,be-

U A

.'

157
'-'

"-.-U """ """ - - : - -" . . - - . - . . - - - , """" - - - - - "2 - - - - "" - . - - . :""""""""

SVSUBROUTINE PRNT(NTXNTYNTCXNXNAMEXNAEY,VAIXPKXYEX,

* THIS ROUTINE OUTPUTS HEADINGS AND CONTROLS THE PRINTING OF THE
* VARIOUS VARIABLES

*****,****************,,,********************* ********* **,

* OUTPUT NUMBER OF WEAPON TYPES
". OUTPUT NUMBER OF EACH TYPE OF WEAPON

* OUTPUT THE TYPICAL AND ACTUAL CASE NUMBERS
* OUTPUT THE AVERAGE NUMBER OF ENGAGEMENTS
* OUTPUT TYPICAL CASE ALLOCATION

OUTPUT ACTUAL CASE ALLOCATION
* OUTPUT THE PROBABILITIES OF KILL

'...

.

P.o

3

o.

• o

%°.

\ SUBROUTINE PRNT2(NA EXPARAMI , PARAM2,NTFMT1 ,MT2,TWO)

* THIS ROUTINE IS USED TO PRINT 1 DIMENSIONAL ARRAYS

LUPLIM IS THE TOTAL NUMBER OF ROWS TO PRINT
* TWO IS USED TO SIGNAL WHEN NOT TO PRINT A SECOND ARRAY

159

p

,L<

SUBROUTINE REPORT
*THIS ROUTINE OUTPUTS THE INPUTS AND SELECTED COMPUTED VALUES IN ,

* A FORMAT

*' OUTPUT THE TITLE
*i OUTPUT THE INDEX WEAPON

* OUTPUT THE BLUE VALUES
*II OUTPUT THE RED VALUES

OUTPUT K (BLUE AND RED)

h -

,%t.

K'

7.,

w

: SUBROUTINE TABLES C S IDEO, SIDED, NAMEX, NAMEY , NTX, NTY. PARAM)
* THIS ROUTINE IS USED TO OUTPUT 2 DIMENSIONAL ARRAYS

LUrPLIM IS THE NUMBER OF COLUMNS TO PRINT

e "

*°°' -

*- S

'' -S.

'. o 5% £

'--'

C ,55,

9.>

'-,

. ,- .- .- .- .- .- -- .., ..- -. .". -.. - -. .-. .-.- ..- ,_ .-. .-. .,. .. . ',,. ,.. .,- . - -, -,-.,- .- - • - .- - -. -,. ..- ..-.., .:-,-

SUBROUTINE AIROPS

* REPRESENTS THE WOC AND CRC ACTIONS

*** *** *** ** ****** *************** *** **** ******* **************** *

MAKE READY QUEUES CURRENT
DO FOR ALL CRC'S

DO FOR ALL WOC'S
REDUCE READY QUEUE
GET NEXT A/C READY QUEUE

SCHEDULE MISSION TAKE OFFS
CHECK AIR SUPPORT REQUESTS

CHECK FOR LAST USABLE TIME FOR ATO
FIND A/C TYPE
CHECK ENOUGH AIRCRAFT AVAILABLE

CALCULATE NUMBER ASSIGNED
PUT ATO ON CRC'S LIST
MAKE MESSAGE FOR CORPS
PUT MESSAGE ON FUTURE QUEUE
WRITE ACTION ON OUTPUT

AIR REQUEST WILL NOT BE FILLED
SET NUMBER OF AIRCRAFT TO ZERO
REMOVE FROM WOC'S ATO LIST
SEND MESSAGE TO CORPS

GET NEXT ATO
ATO USED CASE
ATO NOT USED CASE

END OF THIS WOC SCHEDULE ACTION, PRINT STATUS
GET NEXT WOC

- - LAST WOC FOR THIS CRC COMPLETED SCHEDULE
SET CAS FOR THIS TIME CYCLE
DO FOR ALL NODES

n CHECK FOR COMBAT TYPE UNIT
SET CAS SORTIES TO ZERO

GET NEXT NODE
CHECK FOR WOC SOURCE
CHECK TIME ON TARGET

SET CAS SUPPORT
ap INCREMENT CAS SORTIE COUNT

RESET UNIT AIR REQUEST TO NULL
SCHEDULE SORTIE LANDING
FIND WOC

-. GET NEXT ATO
LAST CAS SUPPORT PUT IN COMBAT, GET NEXT CRC

LAST CRC SCHEDULED

' 162

SUBROUTINE MAKMSG(MTYPE, ISEND, PNODE, IDEST, I1,12,13, ICAP,

" MAKE ATO MESSAGES
, " *INPUT

MTYPE MESSAGE NUMBER
ISEND UNIT TYPE OF ORIGINATOR -

* PNODE POINTER TO WOC'S NODE
• IDEST DESTINATION UNIT
• I1-I3 COMMUNICATION LINK TYPES
• ICAP COMMUNICATION CAPACITY REQUIRED
* PATO POINTER TO AIR TASKING ORDER
. IORIG ORIGINATOR UNIT (98 IS INTERNAL)
* OUTPUT

* PMSG POINTER TO MESSAGE

* OTHER MESSAGE ELEMENTS SET
. * CREATE TIME TO NOW
* MAXIMUM AGE TO 3
• PRIORITY TO 1
*. OUTPUT FLAG IS ON

IF NO RETURN NODES, USE SUPPORT UNIT
GET ALTERNATES FOR MESSAGE

" ¢p..'

o4.mks

163

SUBROUTINE PAOTITLE;PT)*,*******~

* PRINTS AN AIR TASKING ORDER L

**************,**** * * ** * *** *******

'."6

-V

II

k SUBROUTINE STATUS(TY1S. ICOUNT, PREADY)

*PRINT WOO AIRCRAFT STATUS

gme****************************

Eli'

PA a

SUBROUTINE INPUTA

* INPUT AIR OPERATIONS VALUES
* ITYPE - TYPE OF INPUT LINE (CRC,' ',END)

NODEC - CRC UNIT NUMBER
ATIME - ALERT RESPONSE TIME
ETIME - TIME FROM TAKE OFF TO TARGET

* MINAC - MINIMUM NUMBER OF AIRCRAFT ON MISSION
* PS - PROBABILITY OF SURVIVAL OF CAS AIRCRAFT

NODEW - WOC UNIT NUMBER
* ACTYPE - AIRCRAFT TYPE
* ACTIME - TIME AIRCRAFT READY FOR TAKE OFF
* NUMAC - NUMBER AIRCRAFT READY FOR TAKE OFF
* COMMENT - DOCUMENTATION AND REVIEW

* READ IN THE INPUTS AND PRINT THEM OUT

READ IN THE PREAMBLE DOCUMENTATION
READ IN HEADER DOCUMENTATION

FIND NODE
CREATE STRUCTURE FOR ALLOC
STORE PARAMETERS IN ALLOC

READ IN THE HEADER DOCUMENTATION
GET NEXT DATA LINE

CREATE CRC
READY STRUCTURE
GET NEXT AIRCRAFT ENTRY
GET AIRCRAFT READY BLOCK

MAKE NEW READY BLOCK
CREATE RDYQ BLOCK

END OF INPUT FOR AIR OPERATIONS
DEBUG PRINT OF CRC AND WOC STRUCTURES

.°.

.-. -

.5-.|

(SUBROUTINE MINLIM(PNODE,MFLAG)

* SUBROUTINE MINLIM LIMITS THE NUMBER OF MESSAGES
THAT MAY *

[] * ENTER A NODE AT ANY ONE TIME

ZERO OUT MESSAGE IN COUNTERS
' COUNT MESSAGS BY PRIORITY

DON'T COUNT ALTERNATE MESSAGES
DETERMINE CUT OFF PRIORITIES

REMOVE MESSAGES FROM IMQ BY LOW PRIORITY
DO NOT MOVE ALTERNATE MESSAGES
DO NOT MOVE MESSAGE WITH ACCEPTABLE PRIORITY

REMOVE THIS MESSAGE
CHECK MESSAGE OUT OF AGE
CHECK FOR MESSAGE PRIORITY BELOW DELETE LEVEL

DELETE THIS MESSAGE
CHECK FOR MEAASGE DATA

RETURN DATA SPACE
RELEASE MESSAGE SPACE

PUT MESSAGE ON HOLD QUEUE
NEXT MESSAGE WHEN KEEPING MESSAGE ON IMQ
GET NEXT MESSAGE

END OF IMQ
RETURN MESSAGES ON HOLD TO IMQ

p.167

m

ft.

ftp".

-ftil

U.

"". --. - -- -.- .-.-.- - .1'' "" i ') -.- .- ' ') - .- ' - . . ''"'" '. i' .';' . . . " '' ' .-- 'i '-''" " '" " i"." "' 2" ' ' " .. -. -- '-- . .2)

SUBROUTINE TINPUT

" INPUT CHANGES TO CHARACTERISTICS DURING TIME TSSUFRATDTMOAYFLSI,1.1

GET FIRST MESSAGES
d, CHECK FOR CURRENT REINFORCEMENTS

CHECK FOR CURRENT NODE CHAGES
CHECK FOR CURRENT LIMIT CHANGES
CHECK FOR CURRENT LINK CHANGES

; CHECK FOR CURRENT ALLOCATION PARAMETER CHANGES
FIND NODE
FIND ALLOCATION STRUCTURE FOR TYPE MSG

*" END TIME T INPUT FOR THIS TIME INCREMENT

III

168

SUBROUTINE CHFORC(NRC, NBC)

* INPUT COMBAT VALUES IN NRC AND NBC

S 1- TIME FOR UNIT REINFORCEMENTS OR POSTURE
* 2 CHANGE* 2 - UNIT NUMBER ,

3- NOSUBERFUNITO - RESERVE, 1 OFFENSE,*2 -- DEFENSE, 3 -- RETREAT
* 4-14 - NUMBER OF COMBAT SYSTEM REINFORCEMENTS

I16

.l

16-S

-°,-

-i..-

"" S

"..- A..

o'

5" "5",'/' "- "- "- "-'-""-" -" , " " "" , " " -',." "','' ' "- ' ',. ''-' ' '',' " " " '. ' ,'-'- " " "-" " - , - ' " ." • IS.

+I

! SUBROUTINE CHLIM(LIMIT) * ** ** * *****-

* CHANGE INPUT OR OUTPUT MESSAGE LIMITS AT A NODE

SFIND NODE

rD

A-.d

' .
A

1!. .

i-i.

-. °

I:,°

:aL.

-S-

Cd' 170

SUBROUTINE CHNODE(NODET)

*.CHANGE COMMANDER OR SUBORDINATE NODE 4,

q

P%

':I

67

171

p , ° • , . . .- . .•.• . . ° , . •• .° . - . . .

SUBROUTINE CHLINK(LINKT) * ** * i

* CHANGE LINK CAPACITIES DURING TIME T a

b

o ' . ,

II

-A:'

'2"-

--.

172

q

SUBROUTINE MOULIM
** ** * 3r * * * * **** **~~ ** ** * ** * * *** * * * ** ** * * * ** * * * ** *

* LIMITS GENERATION OF OUTPUT MESSAGES AT EACH NODE BASED ON
I * THE NUMBER OF MESSAGES REQUIRED TO BE PROCESSED AT THIS NODE

AND MESSAGE PRIORITY.
* CALLED BY: SUBROUTINE NODE AFTER PROCESSING DECISION
* RULES BUT BEFORE MESSAGE PATH ALLOCATION.

h. ***** ******************* ** ***********************

DO FOR ALL NODES
DO FOR EACH MESSAGE ON FUTURE QUEUE

CHECK TIME
MOVE MESSAGE TO HOLD QUEUE

ERROR IN ROUTING
DESTINATION FOUND
FIND LINK TYPE

ERROR IN ROUTING
GET NEXT MESSAGE

CLEAR COUNTER ARRAY
DO FOR ALL DESTINATIONS

DO FOR ALL LINKS
COUNT APPLICABLE MESSAGES ON HOLD QUEUE

DON'T COUNT ALTERNATE MESSAGES
DON'T COUNT MESSAGES TO BE SENT IN THE FUTURE

COUNT APPLICABLE MESSAGES ON SEND QUEUE AND MOVE ALL
MESSAGES FROM IT TO THE HOLD QUEUE
DON'T COUNT ALTERNATE MESSAGES
IF(MEMORY(PNODE+I).EQ.12)

DON'T COUNT MESSAGES TO BE SENT IN THE FUTURE
DETERMINE CUT OFF PRIORITIES

DELAY OR DELETE MESSAGES
COMMANDER AS DESTINATION FIRST
NEXT PROCESS SUBORDINATE DESTINATIONS
FINALLY PROCESS OTHER DESTINATIONS

TEST FOR OUTPUT
GET NEXT NODE

.

'. Z ,
,.2.:

' .. :173

SUBROUTINE MDELAY(PNODE,PFMQ,PDEST,JP1,JP2,JC1,JC2, **

* DETRMINES WHICH MESSAGE WILL BE SENT, HELD (SET SEND TIME TO
* NEXT TIME) OR DELETED. PROCESSES HOLD QUEUE ON EACH LINK FOR
* THE DESTINATION.
* CALLED BY SUBROUTINE MOULIM

PARAMETERS: PDEST - POINTER TO DESTINATION STRUCTURE
* JPl - MAXIMUM PRIORITY MESSAGE PROCESSED
* JC1 - NUMBER OF MESSAGES AT LEVEL JP1 PROCESSED
* JP2 - MINIMUM PRIORITY MESSAGE DELETED

JC2 - NUMBER OF MESSAGES AT LEVEL JP2 NOT DELETED
* NHOLD - NUMBER OF MESSAGES HELD FOR FUTURE PROCESSING
* NDEL - NUMBER OF MESSAGES DELETED

INDEX - -0, PROCESS FIRST DESTINATION FOR A NODE
* -, PROCESS ADDITIONAL DESTINATION

PROCESS FIRST DESTINATION FOR A NODE
DO EACH LINK

PRIORITY MESSAGE TO BE SENT
IGNORE ALTERNATE MESSAGES

IGNORE FUTURE MESSAGES
TEST FOR EQUAL PRIORITY

TEST ENOUGH MESSAGES AT LOWER PRIORITY
TEST FOR MESSAGE LESS THAN HIGHER PRIORITY

DELAY THIS MESSAGE
MOVE TO FMQ

DELETE THIS MESSAGE
TEST FOR ADDITIONAL DATA

INCREMENT BACK POINTER
GET NEXT MESSAGE

174

no7

I -

SUBROUTINE MSGOUT-(PNODE, POMP,POUT,PDATA,PLENTH)

* MSGOUT GENERATES AN OUTPUT MESSAGE TO ALL DESIGNATED

* DESTINATIONS

* CALLS - GIMME, SNAP, FIND. ERROUT, RULES

* INPUT
* PNODE - POINTER TO NODE

~ * POMP - POINTER TO OUTPUT TYPE
* POUT - POINTER TO OUTPUT MESSAGE TYPE
* PDATA - POINTER TO MESSAGE DATA

. * PLENTH- LENGTH OF BLOCK FOR MESSAGE DATA

- CHECK FOR COMMANDER ONLY
COMMANDER ONLY, SET DESTINATION

DO FOR EACH DESTINATION - DESTINATION TYPE
CHECK DESTINATION TYPE
GET NEXT DESTINATION
DESTINATION FOUND

CREATE OUTPUT MESSAGE
ENTER DATA
TEST FOR RANDOM CHANGE OF MESSAGE LENGTH INDICATED
SET ALTERNATE DESTINATIONS

SET FIRST ALTERNATE TO FIRST NODE ALTERNATE
TRY SECOND ALTERNATE

SET FIRST ALTERNATE TO SECOND NODE ALTERNATE
SET SECOND ALTERNATE TO NODES FIRST ALTERNATE

TRY SECOND MESSAGE ALTERNATE
SET FIRST ALTERNATE TO FIRST NODE ALTERNATE

TRY SECOND NODE ALTERNATE
SET FIRST ALTERNATE TO SECOND NODE ALTERNATE

TRY SECOND NODE ALTERNATE
PSET SECOND ALTERNATE TO SECOND NODE ALTERNATE

END OF ALTERNATE LOGIC
CHECK FOR MESSAGE TRACKING FLAG

SET TRACKING FLAG
" CHECK FOR MESSAGE SEND TIME

PUT MESSAGE ON FUTRUE QUEUE BY TIME
PUT MESSAGE ON SEND QUEUE BY PRIORITY

GET SEND QUEUE
FIND LINK TYPE

ATTACH MESSAGE BLOCK
FINISHED IF COMMANDER ONLY
GET NEXT DESTINATION

END OF OUTPUT MESSAGES

OI-
. ,• ' '..tl % '.%. .L % . ,- A 2, . '.'. .. '. .- ' , ' . .,,' '.' '.-.. .'.""175" . -

SUBROUTINE PROCES (PNODEPOMP)

*SUBROUTINE PROCESS PERFORMS RESPONSE ACTIONS BASED ON
* CONDITIONS OF PROCESS RULES HAVING BEEN MET

* INPUT
* PNODE - POINTER TO NODE
* POMP - POINTER TO OUTPUT TYPE

ITEST FOR RANDOM MESSAGE PROCESSES
CASE(OUTPUT MESSAGE TYPE)

*TYPES(2900,3000,3400,7000,9990,9993,3126,3130,3L36,OTHER)
*CASE(REQUEST AIR SUPPORT)

NON ALLOCATION PROCESS
ALLOCATION PROCESS

*CASE(APPROVED AIR SUPPORT)
*CASE(DELETE ATO)

ATO REQUEST FLAG
*CASE(REQUEST HELOCOPTER SUPPORT)
*CASE(APPROVED HELOCOPTER SUPPORT)

* *CASE(DELETE HTO)
*CASE(ACCEPT STATUS REPORT FROM SUBORDINATE)
*CASE(RECEIVE SPOT INTEL REPORT ON RED FOE)
*CASE(CREATE MESSAGES FOR OUTPUT)

* CASE(RANDOM OUTPUT MESSAGE PROCESS)
*GET NEXT OUTPUT MESSAGE

i *DELETE ALL ATO'S USED BY THIS PROCESS

4 176

14.* -,-- - . *.. - . ' ' . " * .

SUBROUTINE ATODEL (PNODE, POMP)

* ATODEL DELETES ALL ATO REQUEST AND REPLY BLOCKS THAT
* HAVE ITS PROCESS NUMBER

* CALLS - GIMME, SNAP, FIND, ERROUT, RULES

_ * **INPUT
PNODE - POINTER TO NODE
POMP POINTER TO OUTPUT TYPE

SKIP ALL DELETIONS FOR THE WOC
DELETE REQUESTS

TEST FOR THIS PROCESS NUMBER
' DELETE REPLYS

TEST FOR THIS PROCESS NUMBER
-. DELETE SPOT REPORTS
*< TEST FOR THIS PROCESS NUMBER

177.

o'..

'U.'• .q

1 ~177--a

S.. ~ A&.7IA~Z'L'Z2.

SUBROUTINE ATOALO (PNODE, POMP,POUT) -.

" ATOALO ALLOCATES SYSTEMS TO SUBORDINATES TO
" SUPPORT REQUESTS, MESSAGE TYPES 2900, 3000, 3400

G INPUT
* PNODE - POINTER TO NODE

POMP - POINTER TO OUTPUT TYPE
POUT - POINTER TO MESSAGE TYPE

GET FIRST ATO FOR THIS NODE
INITIALIZE POINTER FOR INTERNAL ATO QUEUE
DO FOR EACH ATO MESSAGE

IF PROCESS MATCHES ATO, CREATE MESSAGE
FIND EXISTING ENTRY IN INTERNAL ATO QUEUE

SUPPORT NODE NOT ON QUEUE, CREATE ENTRY
CONSOLIDATE SUPPORT DATA IN EXISTING ENTRY

GET NEXT ATO
CHECK ATOQ

CALCULATE PERCEIVED FORCE RATIOS
SORT SUBORDINATE STATUS STRUCTURES FORCE RATIO QUEUE

NODE DOES NOT ALLOCATE THIS TYPE, PROCESS ALL ATO'S
TEST FOR CORRECT SET OF ALLOCATION PARAMETERS

NOT CORRECT SET OF ALLOCATION PARAMETERS, GET NEXT SET .,
ALLOCATION PARAMETERS FOUND
TEST FOR CURRENT ALLOCATION TIME PERIOD
CALCULATE NUMBER OF SORTIES TO BE ALLOCATED

I ALLOCATE SORTIES AVAILABLE
LOG ACTUAL NUMBER OF SORTIES ALLOCATED

.U..

'o

178

178 '

, U-

~ U ~.-s-- ~ . ~ - ~ * .~ -. . - - - - - * . y o

SUBROUTINE.ALOCAS (PNODEPOMP,POUT,NALLOC,MINSOR,PATOQ)

* ALOCAS ALLOCATES AVAILABLE SORTIES TO REQUESTS FOR
S * CAS USING THE SUBORDINATES RED/BLUE FORCE RATIO QUEUE

* TO SET PRIORITY

* INPUT
* PNODE - POINTER TO NODE
* POMP - POINTER TO OUTPUT TYPE
* POUT - POINTER TO MESSAGE TYPE
* NALLOC- NUMBER OF SORTIES TO ALLOCATE
* MINSOR- MINIMUM OF SORTIES FOR A MISSION
* PATOQ - POINTER TO TEMPORARY ATO ALLOCATION QUEUE

DO WHILE SORTIES ARE AVAILABLE
DO FOR EACH SUBORDINATE

CHECK NUMBER OF SORTIES
ADD SORTIES TO STATUS

GET NEXT SUBORDINATE
SEND REQUEST DENIED TO SUBORDINATES

CREATE 7000 MESSAGE WITH ZERO SORTIES
GET NEXT FRQ

RESET NUMBER ALLOCATED TO ACTUAL NUMBER
DELETE ALL ENTRIES IN TEMPORARY ATO QUEUE

179

°,S

179

SUBROUTINE PRATIO(PNODE)

* PRATIO CALCULATES SUBORDINATES RED/BLUE FORCE RATIO

* * AND ENTERS IT INTO THEIR STATUS STRUCTURE

* INPUT
* PNODE - POINTER TO NODE

GET STATUS QUEUE
DO FOR EACH SUBORDINATE STATUS STRUCTURE

INITIALIZE RED FORCE ARRAY
SUM PERCIEVED RED FORCES
DO FOR EACH FOE
TEST FOR FOE FORCES

SET FORCE RATIO TO ZERO
CALCULATE CURRENT FORCES
CALCULATE FORCE RATIO
SET FORCE RATIO CALCULATION TIME
GET NEXT STATUS STRUCTURE

FINISHED FORCE RATIO CALCULATIONS

180

SS

SUBROUTINE FQUEUE(PNODE)

* FQUEUE ORDERS THE SUBORDINATE'S RED/BLUE FORCE RATIO
* QUEUE BY DESCENDING ORDER. THE QUEUE ROOT IS AT NODE+21

* INPUT
PNODE - POINTER TO NODE

GET STATUS QUEUE
S SET ALL FRQ POINTERS TO 5

I r FIND MAX FORCE RATIO
GET NEXT PSTAT

CHECK IF MAX VALUE FOUND
SET ENTRY AT END OF QUEUE

END OF ORDERING FORCE RATIO QUEUE

.°.

%'°

o, o

°..

181

SUBROUTINE ATOOUT (PNODE, POMP,POUT)
* * * ** *.* * * * ** ** **.* * ** * ** V *-* * **** * ** ** * ** A-*.** * * * * * ****

* ATOOUT CREATES OUTPUT MESSAGES THAT PASS ALONG AIR
* SUPPORT REQUESTS, MESSAGE TYPES 2900, 3000, 3400

CALLS - GIMME, SNAP, FIND, ERROUT, RULES

* INPUT
* PNODE - POINTER TO NODE
* POMP - POINTER TO OUTPUT TYPE

* POUT - POINTER TO MESSAGE TYPE

GET FIRST ATO FOR THIS NODE
IF PROCESS MATCHES ATOP CREATE MESSAGE

ADD SORTIES TO STATUS

.

182

AD-AlSO 973 C3 EVAL MODEL DEVELOPMENT AND TEST VOLUME 2 PROGRMERS 3403
MANUAL.. (U) INSTITUTE FOR DEFENSE ANALYSES ALEXANDRIAUY R F ROBINSON ET AL. OCT 85 IDA-P-1882-VOL-2

UNCLASSIFIED IDR/UG-85-36596 MDA9S3-84-C-6131 F/0 9/2 N

I lffflllf~lfffll7f flffllfl7l

AL 12.2r

11 -

i
/

I*

iii.. 12.

II III miHI r

11111.25 "'I1.4 11111L6-

MICROCOPY RESOLUTION TEST CHART

NATIONAL OUR[AU OF STANARS - 1963 -

Al

A!
A-.

%*

%5

..4*5 4 . , ,. .* ,. ,* , . , , , . ..

SUBROUTINE ATORTN (PNODE, POMP POUT)
* * * * * * * * * * *-* * ***** ** * -* * *** * * "* * **

* ATORTN PASSES ALONG AIR SUPPORT APPROVALS TO THE
* REQUESTOR USING MESSAGE TYPE 7000

* CALLS - GIMME, SNAP, FIND, ERROUT, RULES

* INPUT
* PNODE - POINTER TO NODE
* POMP - POINTER TO OUTPUT TYPE
* POUT - POINTER TO MESSAGE TYPE

CHECK FOR ATO BLOCK
CHECK ATO FOR THIS PROCESS

GET AIR SUPPORT RETURN DESTINATION FROM ATO LIST
FIND RETURN DESTINATION

CREATE OUTPUT MESSAGE
ENTER DATA
SET ALTERNATE DESTINATIONS

SET FIRST ALTERNATE TO FIRST NODE ALTERNATE
TRY SECOND ALTERNATE

SET FIRST ALTERNATE TO SECOND NODE ALTERNATE
SET SECOND ALTERNATE TO NODES FIRST ALTERNATE

TRY SECOND MESSAGE ALTERNATE
SET FIRST ALTERNATE TO FIRST NODE ALTERNATE

TRY SECOND NODE ALTERNATE
SET FIRST ALTERNATE TO SECOND NODE ALTERNATE

TRY SECOND NODE ALTERNATE
SET SECOND ALTERNATE TO SECOND NODE ALTERNATE

END OF ALTERNATE LOGIC
CHECK FOR MESSAGE TRACKING FLAG

SET TRACKING FLAG
CHECK FOR MESSAGE SEND TIME

P PUT MESSAGE ON FUTRUE QUEUE BY TIME
PUT MESSAGE ON SEND QUEUE BY PRIORITY

GET SEND QUEUE
FIND LINK TYPE

GET NEXT ATO
RESET MESSAGE TRACKING FLAG OFF

183.

-

" 183 2

, , AI' 4 -, " -., _ . .< , ..",;-"." ' " ..,,.;_ _<', ": ." ,'- W-

B.3. Post-Processor

The post-processor consists of two programs. Both programs

produce graphics from data files created by C3EVAL. Program

GraphSum uses files C3SUM.DAT and LOSST.DAT for input to create

summary graphs. Program GraphT uses files TIMET.DAT and

LOSST.DAT for input to create time t graphs. File C3SUM contains

all summary data pertaining to the number of messages and

sorties. File TIMET contains running totals for each time period

for all data pertaining to the number of messages and sorties.

File LOSST contains running totals for each time period for all

data pertaining to the number of combat system losses.

B.3.a. Program GraphSum

W GraphSum creates bar graphs using the summary data output by

C3EVAL. The actual graphing will be done by a call to

VAXDECGRAPH. Any detailed information on DECGRAPH can be

obtained from the appropriate VAXDECGRAPH manuals. There are 5

types of graphs: communications path limits, input message

limits, output message limits, combat support and losses. The

graphs represent the total messages/sorties/losses for a given

time period for each uni'. displayed. The first four graphs can

pdisplay from 1 to 5 units at a time. The fifth graph can only

display 1 unit at a time.

The first part of file C3SUM is the preamble documentation. -.

The first line of the preamble documentation is used as the

subtitle for the graph. The last line of the preamble contains

'END' in card columns 1-4. Note that the preamble must contain

at least 2 lines. After the 'END'card follows 3 header documen-

tation lines. The rest of the file is data. There is a maximum

of 19 units each represented by one data line of the form

(IX,3A4,218,1215). The values read are:

184

Unit identifier (consisting of 12 characters) -L
Unit number

Unit type

Communications limit in

Communications limit out

Communications limit held

Communications limit deleted

Input limit in

Input limit held

Input limit deleted

Output limit out

Output limit held

Output limit deleted L

The last unit read in must be the unit number 1.

B.3.a(1). Subroutine GetSys

This subroutine is only called when the user requests to

graph losses. The user is allowed to choose from 1 to 6 combat

systems to graph from a list of 11 combat systems. The 11 combat

systems are: apc, afv, tank, atank lt, atank, hv, mortar,

artillery, helicopter, aaa, sam and cas. The user then chooses

" which unit to graph. The losses for the specified blue unit and

the red units facing the blue unit are graphed. The units that

the user can choose from are all units who have non-zero losses.

B.3.a(2). Subroutine GetVector

This subroutine determines which units will be graphed.

There is a limit of 5 units per graph. The units to be graphed

are determined at run time by the user. When the user selects

the units, their locations within the data structure are stored

in a unit vector for later recall. The units available for

selection are determined by the input file.

185

'- t k ' ; , ' € '. . '. "" '"" " "' """""""'""'" " "'"' " "" "" .'-a-'.-'.-'.-'.-'..'. '.'- "-- -'. "..'..'. v , v.-'.." ." ..-. -.. '-'.

B.3.a(3). Subroutine Graphi

Subroutine Graphl creates the data file for a bar graph of

the communications path limits. The data file consists of 2

sections: the instruction portion and the data portion. The

instruction portion contains the title, subtitle, horizontal

label and vertical label for the graph. The data portion has a

line for each unit in the unit vector. Each line contains the

unit name and the number of messages in, out, held and deleted by

the communications links.

B.3.a(4). Subroutine Graph2

Subroutine Graph2 creates the data file for a bar graph of

the input message limits. The data file consists of 2 sections.

The instruction portion contains the title, subtitle, horizontal

label and vertical label for the graph. The data portion has a

line for each unit in the unit vector. Each line contains the

unit name and number of messages in, held and deleted at the

Sinput side of the node.

B.3.a(5). Subroutine Graph3

Subroutine Graph3 creates the data file for a bar graph of

the output message limits. The data file consists of 2 sections.

The instruction portion contains the title, subtitle, horizontal
"'S label and vertical label for the graph. The data portion has a

line for each unit in the unit vector. Each line contains the

unit name and the number of messages out, held and deleted at the

output side of the node.

B.3.a(6). Subroutine Graph4

Subroutine Graph4 creates the data file for a bar graph of

the combat support. The data file consists of 2 sections. The

instruction portion contains the title, subtitle, horizontal

18 6

i'
. , . '. o % "-. ' " - '. ''' ' -€ '-'- . '. ,-, . , ', - , ." ' ' -" ,- , " '.. - . -% -. .- .

label and vertical label for the graph. The data portion as a

line for each unit in the unit vetor. Each line portion has a

line for each unit in the unit vector. Each line contains the

unit name and the number of close air support and helicopter

V sorties the unit received.

B.3.a(7). Subroutine Graph5

Subroutine GraphS creates the data file for a bar graph of

the losses. The data file consists of 2 sections. The

instruction portion contains the title, subtitle, horizontal

C" label and vertical label for the graph. The title contains the

name of the unit being graphed. The data portion has a line for

each combat system to be graphed. Each line contains the name of

the combat system and the blue and red losses at the specified

unit.
I.

B.3.a(8). Subroutine Options

4 Subroutine Options allows the user to select at run time

which type of graph is to be used. The six options available to

"- the user are:

(1) Quit

(2) Communications Path Limits

(3) Input Limits

-f (4) Output Limits

(5) Combat Support

(6) Losses

187

%-,,/
• l) kI ! :~

B.3.a(9).. Data Structures

NAME TYPE DESCRIPTION

COMSYS A 1st dimension - multiple combat systems

2nd dimension

1-3 - name of the combat system

4 - combat system's number

LOSS A ist dimension - multiple time values

2nd dimension - multiple units

1-11 - blue combat systems losses

12-22 - red combat systems losses

23 - force ratio

NUMELEM I Number of units to graph

NUMSYS I Number of combat systems to graph

NUMUNIT I Number of units read in from data file

SCREEN I Value representing the action to take

1 - Quit

2 - Communications path limits I

3 - Input limits

4 - Output limits

5 - Combat support

6 - Losses

SUBTI A 40 character field for identifying the
data set

- SUMDATA A 1st dimension - multiple time values

2nd dimension - multiple units

3rd dimension

1- 4 - Communication paths limits
Number of messages in, out,
held, and deleted

5- 7 - Input limits
Number of messages in, held,
and deleted

8-10 - Output limits
Number of messages out,
held, and deleted

1S8,

NAME TYPE DESCRIPTION .9

11-12 - Combat support
Number of CAS and Helicopter
sorties

V UNITID A 1st dimension - multiple units

2nd dimension

1- 3 - unit name

4 - unit number

5 - unit type

6 - combat system losses flag

0 -- > unit suffered losses

1 -- > unit had no losses
VECTOR A The unit numbers of the units to graph

B.3.a(1O). Program Notes V

One possible enhancement would be to add the capability for the
user to specify the range for the vertical axis. This way the

Sgraphs would have the same scales and could be placed side to side
for comparison. The problem is that there seems to be no way to

tell DecGraph to freeze the scale from the user's code. Another

enhancement would be to specify colors for each part of the graph

instead of leaving it to random selection.

189

189.

'-
"_ '.9 "".. 9 r. ' ,". "" r" ' ';, " ' , ' _< € ": . .' t - .: ."-...- - . . .", r.: :. . - . . '-.

V, : - " , ,

m.d

kSt.

a-..

PROGRAM GRAPHSUM

PURPOSE: CREATE BAR GRAPHS USING SUMMARY DATA OUTPUTTED BY
CZEVAL. THERE ARE 5 TYPES OF GRAPHS: COMMUNICATIONS PATH
LIMIT, INPUT LIMIT, OUTPUT LIMIT, COMBAT SUPPORT AND LOSSES.

LIMITATIONS:
MAXIMUM OF 19 UNITS BY DIMENSION.

. EXTERNAL REFERENCES:
k. DECGRAPH

K~i READ SUBTITLE

SKIP OVER THE PREAMBLE DOCUMENTATION

SKIP OVER THE HEADER DOCUMENTATION

READ IN THE SUMMARY DATA

W READ LOSSES DATA FILE

INITIALIZE GRAPH DATA FILE

pig SELECT GRAPH

CHECK TO SEE IF USER IS READY TO QUIT

DETERMINE UNIT VECTOR AND EACH ELEMENTS LOCATION IN STORAGE

oil

BRANCH TO OUTPUT APPROPRIATE GRAPH DATA

CREATE DATA FILE FOR GRAPH 1 - COMMUNICATIONS PATH LIMIT

- CREATE DATA FILE FOR GRAPH 2 - INPUT LIMIT

CREATE DATA FILE FOR GRAPH 2 OUTPUT LIMIT

CREATE DATA FILE FOR GRAPH 4 -COMBAT SUPPORT

* CREATE DATA FILE FOR GRAPH 5 - LOSSES

191
* - -< <

, CLOSE DATA FILE AND CREATE GRAPH

-4

. WAIT UNTIL USER READY TO CONTINUE

SUBROUTINE GETSYS(VECTOR,COMSYS,NUMSYS,UNITID,NUMUNIT)

PURPOSE:
USED WHEN GRAPHING LOSSES. DETERMINES WHICH COMBAT SYSTEM

LOSSES TO GRAPH. EACH GRAPH IS LIMITED TO THE LOSSES AT A
PARTICULAR NODE.

j- DETERMINE NUMBER OF COMBAT SYSTEMS TO GRAPH

DETERMINE WHICH COMBAT SYSTEMS TO GRAPH

DETERMINE WHICH UNIT TO GRAPH. ONLY UNITS WHO HAVE NON-ZERO
LOSSES ARE SELECTABLE FOR GRAPHING.

STORE THE TITLFS OF THE COMBAT SYSTEMS THAT WERE CHOSEN TO
BE GRAPHED.

SUBROUTINE GETVECTOR(VECTOR, NUMELEM, UNITID, NUMUNIT)

PURPOSE: DETERMINE WHICH UNITS WILL BE GRAPHED. FIND THE
POSITION OF EACH UNIT WITHIN THE DATA STRUCTURE AND STORE
THE LOCATIONS IN A VECTOR. SUBROUTINE GETVECTOR RETURNS
THE LOCATION VECTOR AND THE NUMBER OF ELEMENTS IN THE
VECTOR.

1 . SUBROUTINE GRAPH1(SUBTI, UNITID, VECTOR, SUMDATA, NUMELEM)

PURPOSE: CREATE DATA FILE FOR BAR GRAPH OF COMMUNICATIONS
PATH LIMITS. GRAPH HAS BARS FOR THE NUMBER OF MESSAGES IN,
OUT, HELD, AND DELETED FOR EACH UNIT IN THE VECTOR.

CREATES INSTRUCTION PORTION OF DATA FILE.

?2". CREATES DATA PORTION OF DATA FILE. EACH DATA LINE CONSISTS
OF THE UNIT NAME IN QUOTES AND THE NUMBER OF MESSAGES IN, OUT,
HELD AND DELETED.

SUBROUTINE GRAPH2(SUBTI, UNITID, VECTOR, SUMDATA, NUMELEM)

PURPOSE: CREATE DATA FILE FOR BAR GRAPH OF INPUT MESSAGE
LIMITS. GRAPH HAS BARS FOR THE NUMBER OF MESSAGES IN,
HELD, AND DELETED FOR EACH UNIT IN THE VECTOR.

CREATES INSTRUCTION PORTION OF DATA FILE.

CREATES DATA PORTION OF DATA FILE. EACH DATA LINE CONSISTS
192i

OF THE-UNIT NAME IN QUOTES AND THE NUMBER OF MESSAGES IN, HELD
AND DELETED.

SUBROUTINE GRAPH3(SUBTI, UNITID, VECTOR, SUMDATA, NUMELEM)

PURPOSE: CREATE DATA FILE FOR BAR GRAPH OF OUTPUT MESSAGE
LIMITS. GRAPH HAS BARS FOR THE NUMBER OF MESSAGES OUT, ,'HELD, AND DELETED FOR EACH UNIT IN THE VECTOR.

CREATES INSTRUCTION PORTION OF DATA FILE.

CREATES DATA PORTION OF DATA FILE. EACH DATA LINE CONSISTS
& OF THE UNIT NAME IN QUOTES AND THE NUMBER OF MESSAGES OUT,

HELD AND DELETED.

1 . SUBROUTINE GRAPH4(SUBTI, UNITID, VECTOR, SUMDATA, NUMELEM)

PURPOSE: CREATE DATA FILE FOR BAR GRAPH OF COMBAT SUPPORT.
GRAPH HAS BARS FOR THE NUMBER OF CLOSE AIR SUPPORT AND
HELICOPTER SORTIES FOR EACH UNIT IN THE VECTOR.

CREATES INSTRUCTION PORTION OF DATA FILE.

3CREATES DATA PORTION OF DATA FILE. EACH DATA LINE CONSISTS
OF THE UNIT NAME IN QUOTES AND THE NUMBER OF CLOSE AIR SUPPORT
AND HELICOPTER SORTIES.

SUBROUTINE GRAPH5(SUBTI,UNITID,VECTOR,LOSS,COMSYS,NUMSYS)

U PURPOSE: CREATE DATA FILE FOR BAR GRAPH OF LOSSES. GRAPH HAS
BARS FOR THE NUMBER OF BLUE AND RED LOSSES FOR EACH COMBAT
SYSTEM FOR THE SPECIFIED UNIT.

CREATES INSTRUCTION PORTION OF DATA FILE

CREATES DATA PORTION OF DATA FILE. EACH DATA LINE CONSISTS
OF THE NAME OF THE COMBAT SYSTEM AND THE BLUE AND RED LOSSES
AT THE SPECIFIED UNIT.

SUBROUTINE OPTIONS(SCREEN)

PURPOSE: ALLOWS THE USER TO SELECT WHICH TYPE OF GRAPH IS
TO BE CREATED.

193

............................

B.3.b. Program GraphT

GraphT creates line graphs using the summary data output by

C3EVAL. The actual graphing will be done by a call to

VAXDECGRAPH. Any detailed information on DECGRAPH can be ob-

tained from the appropriate VAXDECGRAPH manuals. There are 5

types of graphs: communications path limits, input message

limits, output message limits, combat suport and losses. The

graphs represent the number of messages/sorties/losses for a

given unit for each time increment over a set time period.

The input file TIMET consists of a multiple number of data

sets. Each data set represents the running totals for a given

time period. Therefore, in order to obtain the number of

messages/sorties for each time increment the previous total is

subtracted from the current total. The first part of the file is

the preamble documentation. The first line of the preamble

documentation is used as the subtitle for the graph. The last

line of the preamble contains 'END' in card columns 1 - 4. Note,

The data sets follow the 'END' card.

Each data set starts with a line of the form (23X,I6) where

" the value is the time corresponding to the data. The second and

third lines are header documentation lines. The rest of the data

set is data. There is a maximum of 19 units each represented by

one data line of the form (IX,3A4,2I8,12I5). The values read

are:

Unit identifier (consisting of 12 characters)
LUnit number

Unit type

Communications limit in

Communications limit out

Communications limit deleted

-. Input limit in

Input limit held

19o4

ooU

Input limit deleted

Output limit out

POutput limit held
Output limit deleted

The last line read in for each data set must be the unit number
i.

B.3.b(l). Subroutine GetSys

This subroutine is only called when the user requests to

graph losses. The user is allowed to choose from 1 to 6 combat

systems to graph from a list of 11 combat systems. The 11 combat

systems are: apc, afv, tank, atank, lt, atank, hv, mortar,

* artillery, helicopter, aaa, sam and cas. Then the user selects

either the red or blue side to be graphed and which particular

unit to graph. The units that the user can choose from are all

units who have non-zero losses.

B.3.b(2). Subroutine GetUnit

This subroutine determines which unit will be graphed. The

unit to be graphed is determined at run time by the user. When

the user selects the unit its location within the data structure

*is stored for later recall. The units available for selection

are determined by the input file.

B.3.b(3). Subroutine Graphl

Subroutine Graphl creates the data file for a line graph of

the communications path limits at a specific node over a given

time interval. The data file consists of 2 sections: the

instruction portion and the data portion. The instruction

portion contains the title, subtitle, horizontal label and

.-. vertical label for the graph. The data portion has a line for

each time increment. Each line contains the time and the number

195

iVV.~tf~S J rW~'p a~s .- M* ~ L M*- -Uti,..... w~PU FW-l~ r I Y . 1 .0 ILI .W UM

of messages in, out, held and deleted by the communications links

for that one time increment. '1
,-4

B.3.b(4). Subroutine Graph2

Subroutine Graph2 creates the data file for a line graph of

the input message limits at a specific node over a given time

interval. The data file consists of 2 sections. The instruction

portion contains the title, subtitle, horizontal label and

vertical label for the graph. The data portion has a line for

each time increment. Each line contains the tine and the number

of messages in, held and deleted at the input side of the node

for that one time increment.

B.3.b(5). Subroutine Graph3

Subroutine Graph3 creates the data file for a line graph of

* the output message limits at a specific node over a given time

interval. The data file consists of 2 sections. The instruction

portion contains the title, subtitle, horizontal label and ver-

tical label for the graph. The data portion has a line for each

.5' time increment. Each line contains the time and the number of

messages out, held and deleted at the output side of the node for

that one time increment.
,'o--

B.3.b(6}. Subroutine Graph4

Subroutine Graph4 creates the data file for a line graph of

the combat support at a specific node over a given time interval.

The data file consists of 2 sections. The instruction portion

contains the title, subtitle, horizontal label and vertical label

for the graph. The data portion has a line for each time

increment. Each line contains the tine and the number of close

'. air support and helocopter sorties the node received for that one

time increment.

. •19
j 196 ,

5%i-

. -.

B.3.b(7). Subroutine Graph5 .

Subroutine Graph5 creates the data file for a line graph of

the losses at a specific node for either the red or blue side

over a given time interval. The data file consists of 2

sections. The instruction portion contains the title, subtitle,

horizontal label and vertical label for the graph. The title

. contains the name of the unit to be graphed and which side is to

be graphed. The data portion has a line for each time incre-

ments. Each line contains the time and the number of losses for

each combat system for the specified side at the specified node.

"- B.3.b(8) Subroutine Options

Subroutine Options allows the user to select at run time
i which type of graph is to be used. The six options available to

.- the user are:

(1) Quit

(2) Communications Path Limits

(3) Input Limits

(4) Output Limits

(5) Combat Support

(6) Losses

* 197

*1° I.".. % % ~ , , o * . ° . % °. -"."° -"-' ' . ,.' . *°- % / ,° °. ,' ° ' ' o . " .' . . ' ' " " ° "

B.3.b(9). Data Structures

NAME TYPE DESCRIPTION

COMSYS A 1st dimension - multiple combat systems

2nd dimension

1-3 - name of the combat system

4 - combat system's number

LOSS A 1st dimension - multiple time values

2nd dimension - multiple units

3rd dimension

1-11 - blue combat systems losses

12-22 - red combat systems losses

23 - force ratio

NUMSYS I Number of combat systems to graph

NUMUNIT I Number of units read in from data file

SCREEN I Value representing the action to take

1 - Quit

2 - Communications path limits

3 - Input limits

4 -Output limits

5 - Combat support

6 - Losses

SIDE I Value representing which side to graph

1 - Blue

2 - Red

SUBTI A 40 character field for identifying the data set

SUMDATA A 1st dimension - multiple time values

2nd dimension - multiple units

3rd dimension -

1- 4 - Communications paths limits
Number of messages in, out,
held, and deleted

, 5- 7 -Input limits
Number of messages in, held,
and deleted

198

iI

NAME TYPE DESCRIPTION

8-10 - Output limits
Number of messages out, held,
and deleted

11-12 - Combat support
Number of CAS and Helicopter
sorties

p TIME I Number of time increments read in

TIMET A The value of each time increment read in

UNIT I The unit number of the unit to graph

- UNITID A 1st dimension - multiple units

2nd dimension

1- 3 - unit name

4 - unit number

5 - unit type

6 - combat system losses flag

i 0 -- > unit suffered losses

1--> unit had no losses

|B.3.b(lO). Program Notes

One possible enhancement would be to add the capability for the

user to specify the range for the vertical axis. This way the graphs

would have the same scales and could be placed side to side for

• ,comparison. The problem is that there seems to be no way to tell

DecGraph to freeze the scale from the user's code. Another en-

'- hancement would be to specify colors for each part of the graph

instead of leaving it to random selection.

1,9

.y .- '. .q , _

.3.b(11). Post Processor Internal Documentation

pI-?

• o"

(U . -

':

I"
m .-.-. 0 . . -2.-.-., '. -.- - - - .. - - - -. . , , ,'_.',,- , x - , .,,- ' ' ","-" .

"" " "" . , ' ,, ," - o'.." '" ' "
' .' ' .' ."." " . ," " " "' " " "" v '''. " "" ." ° ' ."" ""-' " -' " "" • e- .","' o ':

. "J.

PROGRAM GRAPHT

PPURPOSE: CREATE LINE GRAPHS USING TIME T DATA OUTPUTTED BY
C3EVAL. THERE ARE 4 TYPES OF GRAPHS: COMMUNICATIONS PATH
LIMIT. INPUT LIMIT. OUTPUT LIMIT, AND COMBAT SUPPORT.

LIMITATIONS:
MAXIMUM OF 19 UNITS BY DIMENSION.
THE LAST LINE OF EACH TIME T DATA SET MUST BE THE UNIT

WHOSE IDENTIFIER IS 1.

EXTERNAL REFERENCES:
DECGRAPH

INITIALIZE WORKING AREA

READ TIME T DATA FILE

TIME T DATA FILE CONSISTS OF MULTIPLE TIME T DATA SETS

SKIP OVER THE PREAMBLE DOCUMENTATION

READ IN THE TIME CORRESPONDING TO THIS TIME T DATA SET

READ IN TIME T DATA SET

VALUES READ IN ARE RUNNING TOTALS AT TIME T. WE WANT
TO HAVE THE VALUES FOR EACH INDIVIDUAL TIME T INCREMENT.
THEREFORE, SUBTRACT THE PREVIOUS TIME T TOTAL.

THE LAST RECORD IN A TIME T DATA SET IS THE UNIT WHOSE
IDENTIFIER IS EQUAL TO ONE.

* READ LOSSES DATA FILE

FIND LOCATION OF UNIT NAME WITHIN ARRAY JNITID

,-. INITIALIZE GRAPH DATA FILE

.- SELECT GRAPH

CHECK IF USER IS READY TO QUIT

DETERMINE UNIT TO BE GRAPHED AND ITS LOCATION IN THE
PDATA STRUCTURE

201a. c ,' . -. 5.... / < 21

•,5 ~ ** * 5. -- " ." 5.* " 5 ". " 5.." " • ": • , I : .~a - , -"t~.t S •

BRANCH TO OUTPUT APPROPRIATE GRAPH DATA

' CREATE DATA FILE FOR GRAPH 1 - COMMUNICATIONS PATH LIMIT

CREATE DATA FILE FOR GRAPH 2 - INPUT LIMIT

~ CREATE DATA FILE FOR GRAPH 3 - OUTPUT LIMIT

CREATE DATA FILE FOR GRAPH 4 - COMBAT SUPPORT

CREATE DATA FILE FOR GRAPH 5 - LOSSES

CLOSE DATA FILE AND CREATE GRAPH

WAIT UNTIL USER READY TO CONTINUE

1 ..- SUBROUTINE GETSYS(UNIT,COMSYS,NUMSYS,UNITID.NUMUNIT,SIDE)

PURPOSE:
USED WHEN GRAPHING LOSSES. DETERMINES WHICH COMBAT SYSTEM

LOSSES TO GRAPH. EACH GRAPH IS LIMITED TO THE LOSSES AT A
PARTICULAR NODE ON EITHER THE RED OR BLUE SIDE.

DETERMINE NUMBER OF COMBAT SYSTEMS TO GRAPH

DETERMINE WHICH COMBAT SYSTEMS TO GRAPH

DETERMINE WHETHER TO GRAPH BLUE OR RED SIDE

DETERMINE WHICH UNIT TO GRAPH. ONLY UNITS WHO HAVE
NON-ZERO LOSSES ARE SELECTABLE FOR GRAPHING.

STORE THE TITLES OF THE COMBAT SYSTEMS THAT WERE CHOSEN .
TO BE GRAPHED.

1 ." SUBROUTINE GETUNIT(UNIT, UNITID, NUMUNIT)

PURPOSE: DETERMINE WHICH UNIT WILL BE GRAPHED. FIND
THE POSITION OF THE UNIT WITHIN THE DATA STRUCTURE.

SUBROUTINE GRAPH1(SUBTIUNITIDUNIT,SUMDATATIMET,TIME)

PURPOSE. CREATE DATA FILE FOR LINE GRAPH OF COMMUNICATIONS
PATH LIMITS. GRAPH HAS LINES FOR NUMBER OF MESSAGES IN,
OUT, H..LD AND DELETED WITH RESPECT TO TIME.

202

, - . -. .-- . . -. -.. . . -.-. - . .- - .-..2.. -.

CREATES INSTRUCTION PORTION OF DATA FILE.
S
.4

CREATES DATA PORTION OF DATA FILE. EACH DATA LINE
CONSISTS OF THE TIME AND THE NUMBER OF MESSAGES IN, OUT,
HELD AND DELETED.

SUBROUTINE GRAPH2(SUBTI,UNITID,UNIT,SUMDATATIMET,TIME)

PURPOSE: CREATE DATA FILE FOR LINE GRAPH OF INPUT MESSAGE

LIMITS. GRAPH HAS LINES FOR NUMBER OF MESSAGES IN,
HELD AND DELETED WITH RESPECT TO TIME. Ir

CREATES INSTRUCTION PORTION OF DATA FILE.

CREATES DATA PORTION OF DATA FILE. EACH DATA LINE
CONSISTS OF THE TIME AND THE NUMBER OF MESSAGES IN, HELD
AND DELETED.

SUBROUTINE GRAPH3(SUBTI, UNITID, UNIT, SUMDATA, TIMET, TIME)

PURPOSE: CREATE DATA FILE FOR LINE GRAPH OF OUTPUT MESSAGE
LIMITS. GRAPH HAS LINES FOR NUMBER OF MESSAGES OUT,
HELD AND DELETED WITH RESPECT TO TIME.

CREATES INSTRUCTION PORTION OF DATA FILE.

CREATES DATA PORTION OF DATA FILE. EACH DATA LINE
CONSISTS OF THE TIME AND THE NUMBER OF MESSAGES OUT,

B] HELD AND DELETED.

SUBROUTINE GRAPH4(SUBTI, UNITID, UNIT, SUMDATA, TIMET, TIME)

PURPOSE: CREATE DATA FILE FOR LINE GRAPH OF COMBAT SORTIES.
GRAPH HAS LINES FOR NUMBER OF CLOSE AIR SUPPORT AND
HELICOPTER SORTIES WITH RESPECT TO TIME.

CREATES INSTRUCTION PORTION OF DATA FILE.

CREATES DATA PORTION OF DATA FILE. EACH DATA LINE
CONSISTS OF THE TIME AND THE NUMBER OF CLOSE AIR SUPPORT
AND HELICOPTER SORTIES.

SUBROUTINE GRAPH5(SUBTI,UNITIDUNIT,LOSS,COMSYS,NUMSYS,SIDE,

S PURPOSE:
CREATE DATA FILE FOR LINE GRAPH OF LOSSES. GRAPH HAS LINES

FOR THE NUMBER OF RED OR BLUE LOSSES FOR THE SPECIFIED COMBAT
SYSTEMS AT THE SPECIFIED NODE.

CREATES INSTRUCTION PORTION OF DATA FILE

203 ~9* ~ .?.- .

CREATES DATA PORTION OF DATA FILE. EACH DATA LINE CONSISTS
OF THE TIME AND THE NUMBER OF LOSSES FOR EACH COMBAT SYSTEM
FOR THE SPECIFIED SIDE AT THE SPECIFIED NODE.

SUBROUTINE OPTIONS (SCREEN)

PURPOSE: ALLOWS THE USER TO SELECT WHICH TYPE OF
GRAPH IS TO BE CREATED.

..

1

204,

o - . , - - -, .. - o ; "- ,; - € ,' - . . . , . . -,. . . '. . - -. -..,...-....

SUBROUTINE STATIN

* STATIN PERFORMS INITIATION ACTIONS FOR THE COMMANDERS
* PERCEPTION OF SUBORDINATE STRENGTHS AND COMBAT STATUS

DO FOR ALL NODES
DO FOR ALL STAT (SUBORDINATES) BLOCKS

SET BLUE STRENGTHS

% "1

.,r

l-p

q".

-a'-!

'Si..!

205

: ' * € " - ; " ' " " - . " ' -, - ': " € -€ '/ " " " " "-? ," ' ' " "-. . .*.** - -€ a .- " 2 1 - ; ' ' - " :

SUBROUTINE STATOU

* STATOU PRINTS OUT THE COMMANDERS
* PERCEPTION OF SUBORDINATE STRENGTHS AND COMBAT STATUS

DO FOR ALL NODES
DO FOR ALL STAT (SUBORDINATES) BLOCKS

GET BLUE STRENGTHS
GET POSTURES

"20.

o .°

6

"-

2206

.~

SUBROUTINE STATUP (PNODE, POMP)

SUBROUTINE STATUP UPDATES COMMANDERS PERSEPTIONS OF
SUBORDINATES COMBAT STATUS VIA MESSAGES 3126 AND 3130

INPUT:, PNODE - POINTER TO NODE

POMP - POINTER TO OUTPUT TYPE

TEST FOR SUBORDINATE STATUS STRUCTURE
GET FIRST SPOT REPORTIF REPORT MATCHES PROCESS, LOG DATA

FIND SUBORDINATE'S STATUS STRUCTURE
ERROR, NO SUBORDINATE STATUS STRUCTURE -

DETERMINE SIDE
UPDATE BLUE LOSSES AND STRENGTHS
UPDATE BLUE POSTURE V-
UPDATA BLUE DATA TIME TO LATEST TIME

UPDATE RED LOSSES
UPDATE RED POSTURE
UPDATA RED DATA TIME TO LATEST TIME .'

GET NEXT SPOT REPORT
ALL SPOT REPORTS PROCESSED FOR THIS RULE "1""

207

SUBROUTINE INTLUP (PNODE.POMP, POUT) 1~
* SUBROUTINE INTLUP UPDATES COMMANDERS PERSEPTIONS OF

. * SUBORDINATES COMBAT FOES VIA MESSAGE 3136

* INPUTV, * PNODE - POINTER TO NODE
* POMP - POINTER TO OUTPUT TYPE
* POUT - POINTER TO OUTPUT MESSAGE TYPE

GET IRST SPOT REPORT
IF REPORT MATCHES PROCESS, LOG DATA
TEST FOR SUBORDINATE STATUS STRUCTURE
TSTFIND SUBORDINATE'S STATUS STRUCTURE

ERROR, NO SUBORDINATE STATUS STRUCTURE

UPDATE EXISTING FOE ESTIMATE IF NEW DATA IS LATEST
CHECK DATA CURRENCY

DELETE CURRENT ESTIMATES
ENTER NEW ESTIMATES
DELETE THESE DATA STRUCTURES
GET NEXT SPOT REPORT

ALL SPOT REPORTS PROCESSED FOR THIS RULE

208

"-4

2220.

-% SUBROUTINE CASLOS(SHOTB)

* CASLOS SUBTRACTS COMBAT LOSSES DUE TO CAS FROM
-- * RETURNING AIRCRAFT

DO FOR ALL WOO'S
SET TIME
CHECK AIRCRAFT TYPZ

FIND CORRECT TIME
GET NEXT READY QUEUE

REDUCE NUMBER OF AIRCRAFT RETURNING
ERROR (NO SORTIES RETURNING)

INCREMENT PREADY
INCREMENT PWOC

INCREMENT PCRC
ERROR (NO TYPE I AIRCRAFT RETURNING)

-. '',:,.

W

209 "

xs -z-AT -v, ".Fro

SUBROUTINE RPTLOS(-PNODEEL,RL-OSBPOSR)

RPTLOS CREATES SPOT LOSS REPORTS

INPUT
* PNODE - POINTER TO NODE STRUCTURE

BL - ARRAY OF BLUE WEAPON SYSTEM LOSSES
RL - ARRAY OF RED WEAPON SYSTEM LOSSES

S INITIALIZE SPOT REPORT
INITIALIZE MULTIPLIER INDICES
TEST FOR RANDOM EFFECTS REQUIRED

CREATE BLUE AND RED RANDOM NUMBERS
COPY LOSSES
COPY POSTURES
TEST FOR RANDOM MESSAGE DELAY REQUIRED

. PUT MESSAGES ON THE FUTURE QUEUE IN TIME ORDER

210Z

r.'.
•,.' -

4,

-'" 2 :',,

i11

.4.

w . , -- ' .. - ,- . -,. ,, . : . : . . . ! * <.P. ,.. . ,.,,. -... -- .•-- .-- ..- ...

- S = .. * . .. - .: . -. -... - ,. - -. . - --. . = . , -

SUBROUTINE RANMSG(PNODE,POMP)
GET COMMONS

* RANMSG CREATES ALL THE MESSAGES FOR A NODE THAT ARE CLASSIFIED I
* -AS RANDOM. (IE PROCESS NUMBERS 3800. 4800, 5800, 6800, 7800,
* 5900, AND 7900.

TEST FOR FIRST TIME TO INITIALIZE NODE'S RANDOM QUEUE
GET NEXT POUT

TEST FOR TIME TO SEND RANDOM MESSAGES
SET UP GENERIC MESSAGE FOR NEXT RANDOM TIME

GET NEXT RANDOM MESSAGE

2.'

A~

211 '

*. ;

BLOCK *DATA FRATIO .

* DATA FOR THE-GENERIC TYPE UNIT COMBAT DATA Tp
* FOR BOTH RED ADBLUE FORCES

ENGAGEMENT RATES
TYPICAL NUMBER OF TYPES IN A UNIT
CONTROL SIZES
ALLOCATION OF RED AGAINST BLUE

S ALLOCTATION OF BLUE AGAINST RED
PK RED AGAINST BLUE
PK BLUE AGAINST RED

~212

ril

PROPOSED
DISTRIBUTION

IDA PAPER P-1882

C3 EVAL MODEL DEVELOPMENT AND TEST
Volume II

Programmers Manual

75 Copies

Copies

DEPARTMENT OF DEFENSE

Office Joint Chiefs of Staff .

Washington, DC 20301-5000

ATTN: Dr. Robert Fallon, Office of Director, Command Control 12
and Communications Systems

Dr. William G. Lese, JAD 1
LTC Joseph M. Cummings, USA, JAD 2
CPT W. L. Butler, USN, J-3 1
LTC J. P. Morrison, USAF,J-4 1
CDR T. R. Sheffield, USN, J-5 1
Directorate of Information and Resource Management 20

Office of the Under Secretary of Defense
, for Research and Engineering
,- Room 3D139, The Pentagon

Washington, DC 20301

ATTN: Mr. James Bain, C31 1

Director
Defense Intelligence Agency
Washington, DC 20301-6111

ATTN: Mr. A. J. Straub, (Pompino Plaza 1023)

Office of the Secretary of Defense
OUSDRE (DoD-IDA Managment Office)
1801 N. Beauregard Street
Alexandria, VA 22311

ATTN: Col T. L. Ricketts 1

Defense Technical Information Center 2
* Cameron Station

Alexandria, VA 22314

DL-1

DEPARTMENT OF THE ARMY

Deputy Chief of Staff for Operations and Plans
Room 3C542, The Pentagon
Washington, DC 20310-0403

ATTN: Maj W. E. Ward, USA 1
Mr. Hunter Woodall, DCS/RDA 1

DEPARTMENT OF THE NAVY

Chief of Naval Operations
Department of the Navy

Room 4E549, The Pentagon
Washington, DC 20350

ATTN: CDR D. L. McKinney, USN NOP 1

Commander
Naval Postgraduate School
Monterey, CA 93940

ATTN: Prof Michael G. Sovereign, Chairman 2
HO, Command, Control and Communications

HQ, U. S. Marine Corps
Columbia Pike and Arlington Ridge Road
Arlington, VA 22204

ATTN: LTC T. L. Wllkerson, Office of the Deputy Chief of Staff 1
Plans, Policy and Operations (MD-P)

Commander
Naval Postgraduage School
Monterey, CA 93940

_ ATTN: Prof Michael G. Sovereign 1

Chairman, Command, Control and Communications

DEPARTMENT OF THE AIR FORCE

Deputy Chief of Staff, Operations, Plans & Readiness
Department of the Air Force
Washington, DC 20330

ATTN: LTC M. H. Long, AFXOX 2

CIVILIAN CONTRACTORS

Applications Research Corporation
330 S. Ludlow Street
Dayton, OH 45402

ATTN: Mr. Rodney B. Beach 1

DL-2

* -.-. o--

Institute for Defense Analyses 22
1801 N. Beauregard Street
Alexandria, VA 22311

ATTN: Gen W. Y. Smith 1
Mr. S. J. Deitchman I
Mr. R. Pirie 1
Mr. A. R. Barbeau 1
Dr. William J. Schultis 1
Dr. Harry Williams 1
Mr. Robert F. Robinson 1
Mr. Joseph W. Stahl 1
Dr. J. Bracken 1
Mr. J. L. Freeh 1
Mr. E. Kerlin 1
Mr. A. 0. Kresse 1
Dr. D. L. Ockerman 1
Dr. E. S. Parkin 1
Dr. F. R. Riddell 1
Dr. V. A. Utgoff I
Miss E. Doherty 1
Control and Distribution 5

-. 4.°

... f..

%*-.

.- f.

:- ~DL-3 i:'

'.f-.

3

4

m~.

I?

SI

I
S'SI

U *~% -. S. ~ %~ ~ ~ ~ ~ -

